I am a researcher (“chargé de recherche”) at Inria in the Cambium team in Paris.

My research focuses on different aspects of computation. Much of my research is in relation to (constructive) type theory, often involving the proof assistant Coq. See below for a list of projects. I am excited about any potential collaborator for any of these topics, if you are interested in working with me please get in touch no matter your location, level of expertise, or academic experience – including no or little expertise or experience!

Before joining Cambium, I was a Marie Skłodowska-Curie fellow at Inria in the Gallinette team in Nantes. And before that, I did my PhD at Saarland University with Gert Smolka.

News

older news

Projects

Verified extraction and compilation

I am interested in using the Coq proof assistant as a system to obtain verified executable programs: I co-developed verified extraction from Coq to OCaml (PLDI ‘24); I am involved in the MetaCoq project, a formalisation and implementation of Coq in Coq, where I verified type and proof erasure (POPL ‘20); and I am a team member in the CertiCoq project, a verified compiler from Coq to C.

Synthetic computability

Synthetic computability was pioneered by Richman, Bridges, and Bauer in different flavours of constructive logic. In synthetic computability theory, the fact that all definable functions in constructive logic are computable is made explicit via axioms. Thereby, formalisations can focus on the mathematical essence of results and on rigorous simplification of proofs rather than on encoding programs in model of computation.

Since synthetic computability in most presentations assumes the axiom of countable choice the theory becomes anti-classical, i.e. the law of excluded middle is disprovable. When choosing constructive type theory as implemented by the Coq proof assistant as foundation for synthetic computability, classical logic via the law of excluded middle can be consistently assumed.

We gave a general discussion of the axiom CT (Church’s Thesis) in relation to other axioms for Coq’s type theory (CSL ‘21) an introduction to Parametric Church’s Thesis and synthetic computability without choice (LFCS 22), a definition of Kolmogorov complexity (ITP ‘22’), a solution for Post’s problem for many-one and truth-table reducibility (CSL ‘23), a definition of oracle computability and Turing reductions (APLAS ‘23’), and a proof of Post’s hierarchy theorem (CSL ‘24’).

Synthetic undecidability

Decidability and undecidability proofs are the subarea of computability theory with the most influence on general theoretical computer science. Both kinds of proofs are often intricate and their details are error-prone: Several later retracted results have been published at renowned venues. Synthetic undecidability offers a method to verify the undecidability in a proof assistant such that no doubt remains, without ever dealing with models of computation. This is because all functions definable in Coq’s type theory are by definition computable, and thus undecidability of a problem can be proved by a reduction from Turing machine halting to the problem in question. A prime result is our synthetic undecidability proof of Hilbert’s tenth problem (FSCD ‘19). I co-maintain the Coq Library of Undecidability Proofs, a collaborative project containing machine-checked undecidability proofs.

Formalising models of computation

We have given several machine-checked equivalence proofs between different models of computation such as Turing machines, register machines, the lambda-calculus or partial recursive functions. As part of this work we have proved that the weak call-by-value λ-calculus is reasonable for both time and space (POPL ‘20) and provided a machine-checked version of the result for time (ITP ‘21).

Publications

All publications should either be gold open access (i.e. freely accessible via the publisher) or green open access (i.e. uploaded to a pre-print server like arxiv or hal), and links are included below. If a link is missing and you cannot access a publication freely, please drop me an email.

  1. Liron Cohen, Yannick Forster, Dominik Kirst, Bruno da Rocha Paiva, and Vincent Rahli, 2024. Separating Markov’s Principles, In: Thirty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), ACM.
  2. Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau, 2024. Verified Extraction from Coq to OCaml, Proceedings of the ACM on Programming Languages, volume 8, number PLDI, pp. 52–75.
  3. Yannick Forster, Dominik Kirst, and Niklas Mück, 2024. The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions, In: 32nd EACSL Annual Conference on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 29:1–29:20.
  4. Yannick Forster, Dominik Kirst, and Niklas Mück, 2023. Oracle Computability and Turing Reducibility in the Calculus of Inductive Constructions, In: Programming Languages and Systems - 21st Asian Symposium, APLAS 2023, Taipei, Taiwan, November 26-29, 2023, Proceedings, Lecture Notes in Computer Science, Springer, pp. 155–181.
  5. Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas Tabareau, and Théo Winterhalter, 2023. Correct and Complete Type Checking and Certified Erasure for Coq, in Coq,
  6. Yannick Forster, Felix Jahn, and Gert Smolka, 2023. A Computational Cantor-Bernstein and Myhill’s Isomorphism Theorem in Constructive Type Theory, In: CPP 2023 - Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, Boston, United States.
  7. Yannick Forster and Felix Jahn, 2023. Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-One and Truth-Table Reducibility in Coq, In: 31st EACSL Annual Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 21:1–21:21.
  8. Yannick Forster, Fabian Kunze, and Nils Lauermann, 2022. Synthetic Kolmogorov Complexity in Coq, 13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237, pp. 12:1–12:19.
  9. Yannick Forster, 2022. Parametric Church’s Thesis: Synthetic Computability Without Choice, In: Logical Foundations of Computer Science, Cham: Springer International Publishing, pp. 70–89.
  10. Yannick Forster, Fabian Kunze, Gert Smolka, and Maxi Wuttke, 2021. A Mechanised Proof of the Time Invariance Thesis for the Weak Call-By-Value \(λ\)-Calculus, In: 12th International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 19:1–19:20.
  11. Yannick Forster, Dominik Kirst, and Dominik Wehr, 2021. Completeness theorems for first-order logic analysed in constructive type theory (extended version), J. Log. Comput., volume 31, number 1, pp. 112–151.
  12. Yannick Forster, 2021. Church’s Thesis and Related Axioms in Coq’s Type Theory, In: 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 21:1–21:19. (talk)
  13. Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter, 2020. The MetaCoq Project, J. Autom. Reason., volume 64, number 5, pp. 947–999.
  14. Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter, 2020. Coq Coq Correct! verification of type checking and erasure for Coq, in Coq, Proc. ACM Program. Lang., volume 4, number POPL, pp. 8:1–8:28.
  15. Yannick Forster, Fabian Kunze, and Marc Roth, 2020. The weak call-by-value λ-calculus is reasonable for both time and space, Proc. ACM Program. Lang., volume 4, number POPL, pp. 27:1–27:23.
  16. Yannick Forster, Fabian Kunze, and Maxi Wuttke, 2020. Verified programming of Turing machines in Coq, In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, ACM, pp. 114–128.
  17. Simon Spies and Yannick Forster, 2020. Undecidability of higher-order unification formalised in Coq, In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, ACM, pp. 143–157.
  18. Yannick Forster and Kathrin Stark, 2020. Coq à la carte: a practical approach to modular syntax with binders, In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, ACM, pp. 186–200.
  19. Yannick Forster, Dominik Kirst, and Dominik Wehr, 2020. Completeness Theorems for First-Order Logic Analysed in Constructive Type Theory, In: Logical Foundations of Computer Science - International Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4-7, 2020, Proceedings, Lecture Notes in Computer Science, Springer, pp. 47–74.
  20. Dominique Larchey-Wendling and Yannick Forster, 2020. Hilbert’s Tenth Problem in Coq (extended version), CoRR, volume abs/2003.04604.
  21. Yannick Forster and Gert Smolka, 2019. Call-by-Value Lambda Calculus as a Model of Computation in Coq, J. Autom. Reason., volume 63, number 2, pp. 393–413.
  22. Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar, 2019. On the expressive power of user-defined effects: Effect handlers, monadic reflection, delimited control, J. Funct. Program., volume 29, p. e15.
  23. Yannick Forster, Dominik Kirst, and Gert Smolka, 2019. On synthetic undecidability in Coq, with an application to the Entscheidungsproblem, In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, ACM, pp. 38–51.
  24. Yannick Forster and Dominique Larchey-Wendling, 2019. Certified undecidability of intuitionistic linear logic via binary stack machines and Minsky machines, In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, ACM, pp. 104–117.
  25. Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark, 2019. Call-by-push-value in Coq: operational, equational, and denotational theory, In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, ACM, pp. 118–131.
  26. Yannick Forster and Fabian Kunze, 2019. A Certifying Extraction with Time Bounds from Coq to Call-By-Value Lambda Calculus, In: 10th International Conference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 17:1–17:19.
  27. Dominique Larchey-Wendling and Yannick Forster, 2019. Hilbert’s Tenth Problem in Coq, In: 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 27:1–27:20.
  28. Fabian Kunze, Gert Smolka, and Yannick Forster, 2018. Formal Small-Step Verification of a Call-by-Value Lambda Calculus Machine, In: Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings, Lecture Notes in Computer Science, Springer, pp. 264–283.
  29. Yannick Forster, Edith Heiter, and Gert Smolka, 2018. Verification of PCP-Related Computational Reductions in Coq, In: Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, Lecture Notes in Computer Science, Springer, pp. 253–269.
  30. Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar, 2017. On the expressive power of user-defined effects: effect handlers, monadic reflection, delimited control, Proc. ACM Program. Lang., volume 1, number ICFP, pp. 13:1–13:29.
  31. Yannick Forster and Gert Smolka, 2017. Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq, In: Interactive Theorem Proving - 8th International Conference, ITP 2017, Brası́lia, Brazil, September 26-29, 2017, Proceedings, Lecture Notes in Computer Science, Springer, pp. 189–206.

Theses

Computability in Constructive Type Theory
PhD thesis, Saarland University, 2021.

On the expressive power of effect handlers and monadic reflection (pdf)
Master’s Thesis, Robinson College, University of Cambridge, 2016.

A Formal and Constructive Theory of Computation (pdf)
Bachelor’s Thesis, Programming Systems Lab, Saarland University, 2014.

Extended Abstracts

Talks

Talks since December 2021, for older talks see my old website.

Teaching

Supervised students

Yee Jian Tan, 2024, MPRI M1 internship
A specification of Coq's guard condition in MetaCoq

Weituo Dai, 2024, MPRI M2 internship
Meta-programming with guarantees in MetaCoq

Haoyi Zeng, 2023, Bachelor's thesis, co-advised with Dominik Kirst
Post's problem and the priority method in the Calculus of Inductive Constructions

Janis Bailitis, 2024, Bachelor's thesis, co-advised with Dominik Kirst
Löb's theorem in Coq

Fabian Brenner, 2024, Bachelor's thesis, co-advised with Dominik Kirst
The undecidability of finitary PCF in Coq

Niklas Mück, 2021, Bachelor's thesis, co-advised with Dominik Kirst
The Arithmetical Hierarchy and Post’s Theorem in Coq

Roberto Álvarez, 2021, Master's thesis
Mechanized undecidability of subtyping in System F

Felix Jahn, 2020, Bachelor's thesis
Synthetic One-One, Many-One, and Truth-Table Reducibility in Coq

Marcel Ullrich, 2020, Bachelor's thesis
Generating induction principles for nested inductive types in MetaCoq

Dominik Wehr, 2019, Bachelor's thesis, co-advised with Dominik Kirst
A Constructive Analysis of First-Order Completeness Theorems in Coq

Simon Spies, 2019, Bachelor's thesis
Formalising the Undecidability of Higher-Order Unification

Maxi Wuttke, 2018, Bachelor's thesis
Verified Programming Of Turing Machines In Coq

Edith Heiter, 2017, Bachelor's thesis, co-advised with Gert Smolka
Undecidability of the Post Correspondence Problem in Coq

Lectures

Winter 2023/2024 Lecturer
Proof assistants
M2 course, Parisian Master in Research in Computer Science (MPRI), with Théo Winterhalter.
Winter 2023/2023 Lecturer
Proof assistants
M2 course, Parisian Master in Research in Computer Science (MPRI), with Matthieu Sozeau and Théo Winterhalter.
Winter 2020/2021 Organiser and Lecturer
Advanced Coq Programming
Block course, Programming Systems Lab.
Winter 2018/2019 TA
Programming 1
Basic course, Programming Systems Lab.
Summer 2018 Organiser and Lecturer
Advanced Coq Programming
Block course, Programming Systems Lab.
Winter 2017 Adviser
Category Theory
Seminar, Programming Systems Lab.
Summer 2017 Organiser
Mathematics Precourse
Saarland University.
Summer 2017 Organiser
Didactic Seminar for Student TAs in Programming 1
Reactive Systems Group.
Summer 2017 TA
Introduction to Computational Logic
Core course, Programming Systems Lab.
Summer 2017 Adviser
Category Theory
Seminar, Programming Systems Lab.
Winter 2016 Adviser
Funktionale Programmierung
Proseminar, Programming Systems Lab.
Summer 2016 Lecturer, Coach and Organiser
Mathematics Precourse
Saarland University.
Summer 2015 Part of the organisation team
Mathematics Precourse
Saarland University.
Winter 2014/2015 Organiser
Didactic Seminar for Re-exam Student TAs
Reactive Systems Group.
Winter 2014/2015 Supervision Student TA
Programming 1
Basic course, Reactive Systems Group.
Summer 2014 Student TA
Introduction to Computational Logic
Core course, Programming Systems Lab.
Winter 2013/2014 Student TA
Programming 1
Basic course, Dependendable Systems Group.
Summer 2013 Student TA
Mathematics Precourse
Saarland University.

Short CV

  • since 2023: Permanent researcher (“chargé de recherche”) in the Cambium team at Inria Paris.
  • 2021-2023: Postdoctoral Marie Skłodowska-Curie Fellow in the Gallinette team at Inria Nantes
  • 2021: PhD in the group of Gert Smolka at Saarland University
  • 2016: MPhil in advanced computer science at the University of Cambridge, with distinction
  • 2015: B. Sc. in computer science at Saarland University

Click here for a full but only occasionally updated CV.