
Synthetic Computability in
Constructive Type Theory

Yannick Forster
Inria, Gallinette Team, Nantes

Chocola Meeting Lyon, 02.06.2022

received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 101024493.



Work done over the last 7ish years, mostly at Saarland University.

Parts of the work are joint with Dominik Kirst, Gert Smolka, Felix
Jahn, Niklas Mück, Nils Lauermann, and Fabian Kunze.

The Coq Undecidability Library has contributions by Dominique
Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Marc Hermes,
Johannes Hostert, Dominik Kirst, Mark Koch, Fabian Kunze, Gert
Smolka, Simon Spies, Dominik Wehr, Maximilian Wuttke.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 2



Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Computability Theory

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Recipe to write textbooks on computability
1. Introduce favourite model of computation

1.1 Prove sm
n theorem (currying)

✓

1.2 Argue universal program

✓

1.3 Optional: Introduce a second model and argue equivalence

✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)

?

3.4 Oracle computation and Turing reducibility

?

4. Prove undecidability of concrete problems (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Recipe to write textbooks on computability
1. Introduce favourite model of computation

1.1 Prove sm
n theorem (currying)

✓

1.2 Argue universal program

✓

1.3 Optional: Introduce a second model and argue equivalence

✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem relying on Church Turing thesis

✓

3.2 Rice’s theorem relying on Church Turing thesis

✓

3.3 Reduction theory relying on Church Turing thesis

?

3.4 Oracle computation relying on Church Turing thesis

?

4. Prove undecidability (PCP, CFGs) relying on Church Turing thesis

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation

1.1 Prove sm
n theorem (currying)

✓

1.2 Argue universal program

✓

1.3 Optional: Introduce a second model and argue equivalence

✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying)

✓

1.2 Argue universal program

✓

1.3 Optional: Introduce a second model and argue equivalence

✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program

✓

1.3 Optional: Introduce a second model and argue equivalence

✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program ✓

1.3 Optional: Introduce a second model and argue equivalence ✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program ✓

1.3 Optional: Introduce a second model and argue equivalence ✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program ✓

1.3 Optional: Introduce a second model and argue equivalence ✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem ✓

3.2 Rice’s theorem

✓

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program ✓

1.3 Optional: Introduce a second model and argue equivalence ✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem ✓

3.2 Rice’s theorem ✓
3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability (PCP, CFGs)

?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4



Computability proofs machine-checked in proof assistants
1. Introduce favourite model of computation ✓

1.1 Prove sm
n theorem (currying) ✓

1.2 Argue universal program ✓

1.3 Optional: Introduce a second model and argue equivalence ✓

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis

3.1 Undecidability of the halting problem ✓

3.2 Rice’s theorem ✓
3.3 Reduction theory ?
3.4 Oracle computation ?

4. Prove undecidability (PCP, CFGs) ?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 4









Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.

1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.

1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.

1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.

2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Is there a need for machine-checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃*∀2∃*, all, (0)] fragment of FOL could be extended to include equality.

. . . Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbó proves decidability of the MELL-fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6



Machine-checked textbook proofs

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 6









Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 8



Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 8



Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 8



Constructive mathematics to the rescue

Church-Turing thesis:
“Every effectively calculable function is 𝜇-recursive.”

as an axiom in constructive mathematics

CT := ∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

where 𝜑cx is the value of the c-th 𝜇-recursive function with input x

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 9

Kreisel [1965]



Constructive mathematics to the rescue

Church-Turing thesis:
“Every effectively calculable function is 𝜇-recursive.”

as an axiom in constructive mathematics

CT := ∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

where 𝜑cx is the value of the c-th 𝜇-recursive function with input x

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 9

Kreisel [1965]



Overview

1. Axiom-free “synthetic” computability
2. The axiom CT and it’s status in Coq
3. Fully Synthetic Computability á la Richman and Bauer
4. Synthetic Computability without choice
5. Results
6. The Coq Library of Undecidability Proofs

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 10



Definitions

Decidability
∃f : N → B.∀x. px ↔ fx = true

∧ f is computable
∃f : N → B.∀x. px ↔ fx = true

Semi-decidability
∃f : N ⇀ N.∀x. px ↔ fx ↓

∧ f is computable
∃f : N → B.∀x. px ↔ fx ↓

Many-one reducibility
∃f : N → N.∀x. px ↔ q(fx)

∧ f is computable
∃f : N → N.∀x. px ↔ q(fx)

Enumerability, one-one reducibility, truth-table reducibility, . . .

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 11



Definitions

Decidability
∃f : N → B.∀x. px ↔ fx = true

∧ f is computable
∃f : N → B.∀x. px ↔ fx = true

Semi-decidability
∃f : N ⇀ N.∀x. px ↔ fx ↓

∧ f is computable
∃f : N → B.∀x. px ↔ fx ↓

Many-one reducibility
∃f : N → N.∀x. px ↔ q(fx)

∧ f is computable
∃f : N → N.∀x. px ↔ q(fx)

Enumerability, one-one reducibility, truth-table reducibility, . . .

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 11



Definitions

Decidability
∃f : N → B.∀x. px ↔ fx = true

∧ f is computable
∃f : N → B.∀x. px ↔ fx = true

Semi-decidability
∃f : N ⇀ N.∀x. px ↔ fx ↓

∧ f is computable
∃f : N → B.∀x. px ↔ fx ↓

Many-one reducibility
∃f : N → N.∀x. px ↔ q(fx)

∧ f is computable
∃f : N → N.∀x. px ↔ q(fx)

Enumerability, one-one reducibility, truth-table reducibility, . . .

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 11



Definitions

Decidability
∃f : N → B.∀x. px ↔ fx = true

∧ f is computable
∃f : N → B.∀x. px ↔ fx = true

Semi-decidability
∃f : N ⇀ N.∀x. px ↔ fx ↓

∧ f is computable
∃f : N → B.∀x. px ↔ fx ↓

Many-one reducibility
∃f : N → N.∀x. px ↔ q(fx)

∧ f is computable
∃f : N → N.∀x. px ↔ q(fx)

Enumerability, one-one reducibility, truth-table reducibility, . . .

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 11



Axiom-free synthetic computability I

Myhill’s isomorphism theorem

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 12

jww Felix Jahn and Gert Smolka [TYPES ’22]



CT is inconsistent in classical systems. . .
. . . because the characteristic function of the self-halting problem
is not general recursive.

fn := if 𝜙nn ↓ then 1 else 0

Formally in ZF:

f := {(n, 1) | 𝜙nn ↓} ∪ {(n, 0) | 𝜙nn ↑}

Now f is a total functional relation because f is . . .
✓̃ functional

total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]



CT is inconsistent in classical systems. . .
. . . because the characteristic function of the self-halting problem
is not general recursive.

fn := if 𝜙nn ↓ then 1 else 0

Formally in ZF:

f := {(n, 1) | 𝜙nn ↓} ∪ {(n, 0) | 𝜙nn ↑}

Now f is a total functional relation because f is . . .
✓̃ functional
˜ total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]



CT is inconsistent in classical systems. . .
. . . because the characteristic function of the self-halting problem
is not general recursive.

fn := if 𝜙nn ↓ then 1 else 0

Formally in ZF:

f := {(n, 1) | 𝜙nn ↓} ∪ {(n, 0) | 𝜙nn ↑}

Now f is a total functional relation because f is . . .
✓̃ functional
✓̃ total (proof by contradiction)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]



CT is inconsistent in classical systems. . .
. . . because the characteristic function of the self-halting problem
is not general recursive.

fn := if 𝜙nn ↓ then 1 else 0

Formally in ZF:

f := {(n, 1) | 𝜙nn ↓} ∪ {(n, 0) | 𝜙nn ↑}

Now f is a total set-theoretic function because f is . . .
✓̃ functional
✓̃ total (proof by contradiction)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]



CT is consistent in constructive systems

CT := ∀f : N → N.f is general recursive

• Heyting arithmetic, Kleene [1945]
• Bishop’s constructive mathematics / Martin-Löf Type Theory
• HoTT (MLTT + propositional truncation + univalence),

Swan and Uemura [2019]
• MLTT, Yamada [2020]

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 14



Slogans of (Coq’s) Type Theory
Types and functions are native
• Inductive types N, B, A × B and so on
• The function type A → B consists exactly of programs in a

total, strongly typed programming language
Propositions behave constructively
• Propositions are types
• Proofs are programs
• (Total, functional) relations are functions A → B → P
• Classical principles are independent:

DNE := ∀P : P. ¬¬P → P LEM := ∀P : P. P ∨ ¬P

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 15



Slogans of (Coq’s) Type Theory CIC
Types and functions are native
• Inductive types N, B, A × B and so on
• The function type A → B consists exactly of programs in a

total, strongly typed programming language
Propositions behave constructively
• Propositions are types in a separate, impredicative universe P
• Proofs are programs, no large eliminations from P to T
• (Total, functional) relations are functions A → B → P
• Classical principles are independent:

DNE := ∀P : P. ¬¬P → P LEM := ∀P : P. P ∨ ¬P

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 15



CT seems to be admissible in CIC

Meta-theoretically:
For every closed term

⊢CIC f : N → N

one can construct a code c with ⊢CIC c : N s.t.

⊢CIC c computes f

Follows from semantic extraction theorem for Coq [Letouzey, 2004]
Mechanised proof using weak call-by-value 𝜆-calculus?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 16



CT is not inconsistent in CIC

fn := if 𝜙nn ↓ then true else false

decision can not be implemented

However, we can define the graph relation G : N → B → P

Gnb := 𝜙nn ↓ ↔ b = true
✓̃G is functional

G is total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 17



CT is not inconsistent in CIC

fn := if 𝜙nn ↓ then true else false

decision can not be implemented

However, we can define the graph relation G : N → B → P

Gnb := 𝜙nn ↓ ↔ b = true
✓̃G is functional

G is total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 17



CT is not inconsistent in CIC

fn := if 𝜙nn ↓ then true else false

decision can not be implemented

However, we can define the graph relation G : N → B → P

Gnb := 𝜙nn ↓ ↔ b = true

✓̃G is functional
G is total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 17



CT is not inconsistent in CIC

fn := if 𝜙nn ↓ then true else false

decision can not be implemented

However, we can define the graph relation G : N → B → P

Gnb := 𝜙nn ↓ ↔ b = true
✓̃G is functional
˜G is total

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 17



CT is not inconsistent in CIC

fn := if 𝜙nn ↓ then true else false

decision can not be implemented

However, we can define the graph relation G : N → B → P

Gnb := 𝜙nn ↓ ↔ b = true
✓̃G is functional
✓̃G is total (using proof by contradiction, i.e. LEM)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 17



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.
✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.
✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.

✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.
✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.
✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
X̃ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
˜ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Curry Howard isomorphism:
A proof of ∃b.pb is a pair. A proof of ∀a.pa is a function.

A proof of ∀a.∃b. Rab is a function returning a pair.
✓̃∀p : (∃a. Ba) → P. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
X̃ ∀p : (∃a. Ba) → T. (∀(a : A)(b : Ba). p(a, b)) → ∀(s : ∃a. Ba). ps
X̃ 𝜋1 : (∃a. Ba) → A

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACA,B := ∀R : A → B → P.(∀a.∃b. Rab) → ∃f : A → B.∀a. Ra(fa)

Theorem
The law of excluded middle and the axiom of countable choice
together are inconsistent with CT:

LEM ∧ ACN,B → ¬CT

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 18



Axiom-free synthetic computability II
The following are equivalent: C-ACA,B := ∀R : A → B → P.CR →
(∀a.∃b.Rab) → ∃f .∀a. Ra(fa)
Theorem
𝛴0

1-ACN,B

Theorem
• MP := ∀f : N → B. ¬¬(∃n. fn = true) → (∃n. fn = true)
• ∀X .∀p : X → P. 𝒮p → ∀x. ¬¬px → px
• ∀X .∀p : X → P. 𝒮p → 𝒮p → ∀x. px ∨ ¬px
• ∀X .∀p : X → P. 𝒮p → 𝒮p → 𝒟p

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

jww Dominik Kirst and Gert Smolka [CPP ’19]



Axiom-free synthetic computability II
The following are equivalent: C-ACA,B := ∀R : A → B → P.CR →
(∀a.∃b.Rab) → ∃f .∀a. Ra(fa)
Theorem
𝛴0

1-ACN,B

Theorem
• MP := ∀f : N → B. ¬¬(∃n. fn = true) → (∃n. fn = true)
• ∀X .∀p : X → P. 𝒮p → ∀x. ¬¬px → px
• ∀X .∀p : X → P. 𝒮p → 𝒮p → ∀x. px ∨ ¬px
• ∀X .∀p : X → P. 𝒮p → 𝒮p → 𝒟p

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

jww Dominik Kirst and Gert Smolka [CPP ’19]



Which axioms keep CIC computational?

LEM ∧ ACN,B → ¬CT

• Can one of the assumptions be dropped? (No)
• Can one of the assumptions be weakened? (Yes)
• How much?

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 20



Weak(est) classical logical and choice principles

Theorem

LEM

∧ → ¬CT

ACN,B

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

LEM

∧ → ¬CT

∀R : N → B → P. (∀n.∃ b. Rnb) → ∃f .∀n. Rn(fn)

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

LEM

∧ → ¬CT

∀R : N → B → P. (∀n.∃!b. Rnb) → ∃f .∀n. Rn(fn)

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

LEM

∧ → ¬CT

AUCN,B

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

∀P : P. P ∨ ¬P

∧ → ¬CT

AUCN,B

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

∀f : N → B. (∃n. fn = true) ∨ ¬(∃n. fn = true)

∧ → ¬CT

AUCN,B

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

∀f : N → B. ¬¬(∃n. fn = true) ∨ ¬(∃n. fn = true)

∧ → ¬CT

AUCN,B

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles

Theorem

WLPO

∧ → ¬CT

AUCN,B

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Weak(est) classical logical and choice principles
Lemma
WKL → ¬CT, WKL is Weak Kőnig’s Lemma, proof via Kleene trees

C-ACA,B := ∀R : A → B → P.CR → (∀a.∃b.Rab) → ∃f .∀a. Ra(fa)

Theorem
𝛴0

1-ACN,B

Theorem
The following are equivalent:

1. WKL
2. LLPO ∧𝛱0

1-ACN,B

3. ∀R : N → B → P. R is 𝛱0
1 → (∀n.¬¬∃b. Rnb) → ∃f .∀n. Rn(fn)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 22



Weak(est) classical logical and choice principles
Lemma
WKL → ¬CT, WKL is Weak Kőnig’s Lemma, proof via Kleene trees

C-ACA,B := ∀R : A → B → P.CR → (∀a.∃b.Rab) → ∃f .∀a. Ra(fa)

Theorem
𝛴0

1-ACN,B

Theorem
The following are equivalent:

1. WKL
2. LLPO ∧𝛱0

1-ACN,B

3. ∀R : N → B → P. R is 𝛱0
1 → (∀n.¬¬∃b. Rnb) → ∃f .∀n. Rn(fn)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 22



Weak(est) classical logical and choice principles
Lemma
WKL → ¬CT, WKL is Weak Kőnig’s Lemma, proof via Kleene trees

C-ACA,B := ∀R : A → B → P.CR → (∀a.∃b.Rab) → ∃f .∀a. Ra(fa)

Theorem
𝛴0

1-ACN,B

Theorem
The following are equivalent:

1. WKL
2. LLPO ∧𝛱0

1-ACN,B

3. ∀R : N → B → P. R is 𝛱0
1 → (∀n.¬¬∃b. Rnb) → ∃f .∀n. Rn(fn)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 22





Synthetic computability á la Richman
𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT

′

:=

∃𝜑.

∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability á la Richman

𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT′ := ∃𝜑.∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability á la Richman, Bridges, and Bauer

𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT′ := ∃𝜑.∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability á la Richman, Bridges, and Bauer

𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT′ := ∃𝜑.∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
There is an sm

n operator for currying.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability á la Richman, Bridges, and Bauer

𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT′ := ∃𝜑.∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
The law of excluded middle is false: ¬(∀P : P. P ∨ ¬P)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability á la Richman, Bridges, and Bauer

𝜑cx is the value of the c-th 𝜇-recursive function with input x

CT′ := ∃𝜑.∀f : N → N. ∃c : N. ∀x. 𝜑cx B fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

Bridges and Richman [1987] remark

countable choice can be avoided by postulating an sm
n operator

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 24



Synthetic computability without choice
Assume

1. a (partial) function 𝜑

2. universal for N → N: ∀f : N → N.∃c : N.∀x. 𝜑cx B fx,
3. a function s : N → N → N
4. with the property that 𝜑s(c,x)y ≡ 𝜑c⟨x, y⟩.

Equivalently, using parametrical universality

SCT := ∃𝜑. ∀f : N → N → N.∃𝛾 : N → N.∀i. 𝜑𝛾i ≡ fi

or using parameterised partial functions N → N ⇀ N (EPF),
or using parameterised boolean functions N → N ⇀ B (SCTB),
or using parametrically enumerable predicates N → N → P (EA).

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 25



Synthetic computability without choice
Assume

1. a (partial) function 𝜑

2. universal for N → N: ∀f : N → N.∃c : N.∀x. 𝜑cx B fx,
3. a function s : N → N → N
4. with the property that 𝜑s(c,x)y ≡ 𝜑c⟨x, y⟩.

Equivalently, using parametrical universality

SCT := ∃𝜑. ∀f : N → N → N.∃𝛾 : N → N.∀i. 𝜑𝛾i ≡ fi

or using parameterised partial functions N → N ⇀ N (EPF),

or using parameterised boolean functions N → N ⇀ B (SCTB),
or using parametrically enumerable predicates N → N → P (EA).

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 25



Synthetic computability without choice
Assume

1. a (partial) function 𝜑

2. universal for N → N: ∀f : N → N.∃c : N.∀x. 𝜑cx B fx,
3. a function s : N → N → N
4. with the property that 𝜑s(c,x)y ≡ 𝜑c⟨x, y⟩.

Equivalently, using parametrical universality

SCT := ∃𝜑. ∀f : N → N → N.∃𝛾 : N → N.∀i. 𝜑𝛾i ≡ fi

or using parameterised partial functions N → N ⇀ N (EPF),
or using parameterised boolean functions N → N ⇀ B (SCTB),

or using parametrically enumerable predicates N → N → P (EA).

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 25



Synthetic computability without choice
Assume

1. a (partial) function 𝜑

2. universal for N → N: ∀f : N → N.∃c : N.∀x. 𝜑cx B fx,
3. a function s : N → N → N
4. with the property that 𝜑s(c,x)y ≡ 𝜑c⟨x, y⟩.

Equivalently, using parametrical universality

SCT := ∃𝜑. ∀f : N → N → N.∃𝛾 : N → N.∀i. 𝜑𝛾i ≡ fi

or using parameterised partial functions N → N ⇀ N (EPF),
or using parameterised boolean functions N → N ⇀ B (SCTB),
or using parametrically enumerable predicates N → N → P (EA).

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 25



Synthetic computability without choice
Assume

1. a (partial) function 𝜑

2. universal for N → N: ∀f : N → N.∃c : N.∀x. 𝜑cx B fx,
3. a function s : N → N → N
4. with the property that 𝜑s(c,x)y ≡ 𝜑c⟨x, y⟩.

due to strict separation of functions and logic in Coq
the law of excluded middle can be consistently assumed

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 25



1. Introduce favourite model of computation
1.1 Prove sm

n theorem (currying)
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA)

✓

3. Develop computability theory relying on axiom

✓

3.1 Undecidability of the halting problem

✓

3.2 Rice’s theorem

✓

3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)

✓

3.4 Oracle computation and Turing reducibility

✓

3.5 Kolmogorov complexity

✓

3.6 Kleene-Post and Post’s theorem

✓

4. Prove undecidability of concrete problems (PCP, CFGs)

✓

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 26



1. Introduce favourite model of computation
1.1 Prove sm

n theorem (currying)
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA) ✓

3. Develop computability theory relying on axiom ✓

3.1 Undecidability of the halting problem ✓

3.2 Rice’s theorem ✓
3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets) ✓

3.4 Oracle computation and Turing reducibility ✓

3.5 Kolmogorov complexity ✓

3.6 Kleene-Post and Post’s theorem ✓

4. Prove undecidability of concrete problems (PCP, CFGs, needs CT) ✓

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 26



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)

• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)
• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)
• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)
• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)
• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)

• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)
• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)
• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)
• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)
• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent (important to formalise textbook proofs)
• but not provable (important for analysing minimal requirements)

• Axioms of choice, countable choice, and countable 𝛱0
1-choice are

• consistent (nice to know)
• but not provable (otherwise LEM ∧ CT would be inconsistent)

• Axiom of countable 𝛴0
1-choice is provable

⇒ enables constructive reverse mathematics for computability
• not too strong (no 𝛱0

1-choice, LEM, MP)

• just strong enough (countable 𝛴0
1-choice)

• This is not the case in (all?) other type theories

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 27



Other type theories

• Martin-Löf Type Theory (e.g. Agda) with ∃x.px := 𝛴x.px:
Proves AC, so LLPO → ¬CT.

• Martin-Löf Type Theory (e.g. Agda) with ∃x.px := ¬¬𝛴x.px:
Does not prove AC, but 𝛱0

1-ACN,B → ¬CT
• Homotopy Type Theory with ∃x.px := ||𝛴x.px||:

Proves AUC, so WLPO → ¬CT.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 28



Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians
in much the same way as excluded middle is for classical mathem-
aticians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics
sensitive to applications of countable choice.”

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 29

Richman [2000, 2001]



Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians
in much the same way as excluded middle is for classical mathem-
aticians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics
sensitive to applications of countable choice.”

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 29

Richman [2000, 2001]



Three Flavours

• No axioms
• Morally identify computable functions with functions
• Can prove results not relying on a universal machine

• With CT as axiom
• Needs a model of computation
• Allows proving undecidability of concrete problems
• Allows talking e.g. about the arithmetical hierarchy

• With SCT as axiom
• No need for model of computation

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 30



Conjecture

The following are consistent in CIC:

• CT (implies in particular SCT)
• LEM (implies in particular MP)
• functional extensionality
• Uniformisation: “Every total relation contains a total functional

subrelation.”

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 31



Results

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 31



Rice’s theorem

EPF := ∃𝜑.∀f : N → N 9 N.∃𝛾. ∀ix. 𝜑𝛾ixBfix
EA := ∃𝜙.∀p : N → N → P.

(∃f .∀i. fi enumerates pi) → ∃𝛾.∀i. 𝜙𝛾i enumerates pi

Theorem
Given EPF every p : (N ⇀ N) → P is undecidable if it

1. is extensional: ∀ff ′ : N ⇀ N.(∀x. fx ≡ f ′x) → pf ↔ pf ′

2. is non-trivial: ∃f1f2. pf1 ∧ ¬pf2

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 32



Rice’s theorem

EPF := ∃𝜑.∀f : N → N 9 N.∃𝛾. ∀ix. 𝜑𝛾ixBfix
EA := ∃𝜙.∀p : N → N → P.

(∃f .∀i. fi enumerates pi) → ∃𝛾.∀i. 𝜙𝛾i enumerates pi

Theorem
Given EPF every p : (N ⇀ N) → P is undecidable if it

1. is extensional: ∀ff ′ : N ⇀ N.(∀x. fx ≡ f ′x) → pf ↔ pf ′

2. is non-trivial: ∃f1f2. pf1 ∧ ¬pf2

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 32



Rice’s theorem

EPF := ∃𝜑.∀f : N → N 9 N.∃𝛾. ∀ix. 𝜑𝛾ixBfix
EA := ∃𝜙.∀p : N → N → P.

(∃f .∀i. fi enumerates pi) → ∃𝛾.∀i. 𝜙𝛾i enumerates pi

Theorem
Given EA every p : (N → P) → P is undecidable if it

1. is extensional: ∀qq′ : N → P.(∀x. qx ↔ q′x) → pq ↔ pq′

2. is non-trivial: ∃q1q2 both enumerable. pq1 ∧ ¬pf2

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 32



EPF := ∃𝜑.∀f : N → N 9 N.∃𝛾. ∀ix. 𝜑𝛾ixBfix

Lemma
Let 𝜑 be given as in EPF and 𝛾 : N → N, then there exists c s.t. 𝜑𝛾c ≡ 𝜑c.

Theorem
Let 𝜑 be given as in EPF and p : N → P. If p treats elements as codes w.r.t. 𝜑
and is non-trivial, then p is undecidable.

Proof.
Let f decide p and let pc1 and ¬pc2. Define hxy := if fx then 𝜑c2y else 𝜑c1y
and let 𝛾 via EPF be s.t. 𝜑𝛾x ≡ hx. Let c be a fixed-point for 𝛾.
Case analysis on fc:
• If fc = true we have pc and 𝜑c ≡ 𝜑𝛾c ≡ hc ≡ 𝜑c2. Thus pc2, contradiction.
• If fc = false we have ¬pc and 𝜑c ≡ 𝜑𝛾c ≡ hc ≡ 𝜑c1. Thus ¬pc1, contradiction.



Simple predicates
Definition (analytic)
A predicate p : N → P is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

jww Felix Jahn



Simple predicates
Definition (analytic)
A predicate p : N → P is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N → P is infinite if there exists an injection of type
N → N returning only elements in p.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

jww Felix Jahn



Simple predicates
Definition (analytic)
A predicate p : N → P is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N → P is infinite if there exists an injection of type
N → N returning only elements in p.

Theorem
Every infinite predicate has an enumerable infinite subpredicate.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

jww Felix Jahn



Simple predicates
Definition (analytic)
A predicate p : N → P is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N → P is infinite if ∀n.∃x > n. px.

Theorem (Meta)
Every definable predicate which can be proved infinite can be
proved to have an enumerable subpredicate.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

jww Felix Jahn



Simple predicates
Definition (analytic)
A predicate p : N → P is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N → P is infinite if there is no list covering p.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

jww Felix Jahn



Kolmogorov complexity
We call a partial function 𝒟 : N ⇀ N a description mode. We call y a
description of x if 𝒟y B x. |n| is the length of the bit string representing a
number n.

∀y ′x. 𝒟′y ′ B x → ∃y. 𝒟y B x ∧ |y| < |y ′| + d.

𝒞xs := s is 𝜇s. ∃y. s = |y| ∧ 𝒟y B x

𝒩 (x) := 𝒞x < x

Lemma
∀x.¬¬∃s. 𝒞xs

Theorem
𝒩 is simple

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 35

jww Nils Lauermann and Fabian Kunze [ITP ’22]



Turing reducibility

Analytic: A 𝜇-recursive functional takes as input an oracle and a number and may
compute a number. Theorem by Kleene and Davis:

F (𝛼)x B𝜇 y → ∃L:LN. (∀x ∈ L. ∃y. 𝛼x B y) ∧ ∀𝛽. (∀x ∈ L. 𝛼x = 𝛽x) → F (𝛽)x B𝜇 y

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 36

jww Dominik Kirst [TYPES ’22]



Turing reducibility

F (𝛼)x B𝜇 y → ∃L:LN. (∀x ∈ L. ∃y. 𝛼x B y) ∧ ∀𝛽. (∀x ∈ L. 𝛼x = 𝛽x) → F (𝛽)x B𝜇 y

Synthetically, a Turing functional F :(Y ⇀B) → (X  ⇀ B) . . .
1. . . . is continuous if: ∀R:Y ⇀B.∀x:X .∀b:B. FRxb → ∃L : LY . (∀y ∈ L.∃b. Ryb) ∧

∀R′:Y ⇀B. (∀y ∈ L.∀b. Ryb → R′yb) → FR′xb
2. . . . factors through a computational core F ′:(Y⇀B)→(X⇀B) if:

∀f :Y⇀B.∀R:Y ⇀B. f computes R → F ′f computes FR

where f :Z1⇀Z2 computes a functional relation R:Z1 ⇀Z2 if ∀xy. Rxy ↔ fx B y.
A synthetic Turing reduction from p to q:Y→P maps the characteristic relation of q
to the one of p.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 36

jww Dominik Kirst [TYPES ’22]



The arithmetical hierarchy
All first-order logic formulas is equivalent to a formula in prenex nor-
mal form if and only if LEM holds.
We can define a predicate p : N → P to be

• 𝛴0 and 𝛱0 if it is expressible as quantor-free arithmetical formula.
• 𝛴n+1 if there is a quantor-free arithmetical formula q with
∀x. px ↔ ∃y⃗1∀y⃗2 . . .∇y⃗n. q(x, y⃗1, y⃗2, . . . , y⃗n)

• 𝛱n+1 if there is a quantor-free arithmetical formula q with
∀x. px ↔ ∀y⃗1∃y⃗2 . . .∇y⃗n . . . . q(x, y⃗1, y⃗2, . . . , y⃗n)

Or replace quantor-free by decidable.
Theorem
Both definitions are equivalent under CT.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 37

jww Niklas Mück and Dominik Kirst [TYPES ’22]



The arithmetical hierarchy
All first-order logic formulas is equivalent to a formula in prenex nor-
mal form if and only if LEM holds.
We can define a predicate p : N → P to be

• 𝛴0 and 𝛱0 if it is expressible as quantor-free arithmetical formula.
• 𝛴n+1 if there is a quantor-free arithmetical formula q with
∀x. px ↔ ∃y⃗1∀y⃗2 . . .∇y⃗n. q(x, y⃗1, y⃗2, . . . , y⃗n)

• 𝛱n+1 if there is a quantor-free arithmetical formula q with
∀x. px ↔ ∀y⃗1∃y⃗2 . . .∇y⃗n . . . . q(x, y⃗1, y⃗2, . . . , y⃗n)

Or replace quantor-free by decidable.
Theorem
Both definitions are equivalent under CT.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 37

jww Niklas Mück and Dominik Kirst [TYPES ’22]



Ever seen this principle?

Markov’s Principle

MP := ∀f :N→B. ¬¬(∃n. fn = true) ↔ (∃n. fn = true)

Anonymised Markov’s Principle

AMP := ∀f :N→B.∃g:N→B. ¬¬(∃n. fn = true) ↔ (∃n. gn = true)

Principle of Finite Possibility

PFP := ∀f :N→B.∃g:N→B. ¬(∃n. fn = true) ↔ (∃n. gn = true)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 38



Ever seen this principle?

Markov’s Principle

MP := ∀f :N→B. ¬¬(∃n. fn = true) ↔ (∃n. fn = true)

Anonymised Markov’s Principle

AMP := ∀f :N→B.∃g:N→B. ¬¬(∃n. fn = true) ↔ (∃n. gn = true)

Principle of Finite Possibility

PFP := ∀f :N→B.∃g:N→B. ¬(∃n. fn = true) ↔ (∃n. gn = true)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 38



Post’s theorem
Let rn enumerate all continuous functions F ′:(Y⇀B)→(X⇀B).
Lemma
There is a Turing functional with core F ′.

A′ := 𝜆n.∃R. (∀f . R f = rn f ) ∧ R A n true
A is semi-decidable relative to B if there is a Turing functional F with

∀n. An ↔ F B n true.

Theorem (Post)
Assuming LEM:
• A unary predicate A is 𝛴n+1 iff it is semi-deciable relative to ∅(n).
• If A is 𝛴n, then A ⪯T ∅(n).

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww with Niklas Mück and Dominik Kirst [TYPES ’22]



Completeness of first-order logic
Let 𝒯 › 𝜙 be Tarski-style validity of a formula 𝜙 under theory 𝒯 in all models
ℳ satisfying Peirce’s law, where n-ary functions are interpreted as functions
Dn → D and predicates as predicates Dn → P.
𝛼-completeness for 𝛼 : (form → P) → P

∀𝒯 : form → P. 𝛼(𝒯 ) → ∀𝜙 : form. 𝒯 › 𝜙 → (∃𝛤 : listform. 𝛤 ⊂ 𝒯 ∧ 𝛤 ⊢ 𝜙)

• Arbitrary completeness is equivalent to LEM
• 𝒟-completeness is equivalent to MP
• ℰ-completeness is equivalent to MP
• finite-completeness is equivalent to ∀f : N → B. computable f → . . .

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 40

jww Dominik Kirst and Dominik Wehr [LFCS ’20, LOGCOM

’21]



Completeness of first-order logic

If we interpret predicates as boolean functions Dn → B we have that
• Arbitrary completeness is equivalent to LEM and Weak König’s Lemma for

arbitrary trees
• 𝒟-completeness follows from LEM and Weak König’s Lemma for arbitrary

trees

Does MP suffice? Equivalence?

• ℰ-completeness is equivalent to ???
• finite-completeness is equivalent to ???

WKL for computable trees is false.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

jww Dominik Kirst, Hugo Herbelin



Completeness of first-order logic

If we interpret predicates as boolean functions Dn → B we have that
• Arbitrary completeness is equivalent to LEM and Weak König’s Lemma for

arbitrary trees
• 𝒟-completeness follows from LEM and Weak König’s Lemma for arbitrary

trees Does MP suffice? Equivalence?
• ℰ-completeness is equivalent to ???
• finite-completeness is equivalent to ???

WKL for computable trees is false.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

jww Dominik Kirst, Hugo Herbelin



Completeness of first-order logic

If we interpret predicates as boolean functions Dn → B we have that
• Arbitrary completeness is equivalent to LEM and Weak König’s Lemma for

arbitrary trees
• 𝒟-completeness follows from LEM and Weak König’s Lemma for arbitrary

trees Does MP suffice? Equivalence?
• ℰ-completeness is equivalent to ???
• finite-completeness is equivalent to ??? WKL for computable trees is false.

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

jww Dominik Kirst, Hugo Herbelin



The Coq Library of Undecidability Proofs

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 41



Synthetic undecidability
Analytic definition

𝒰p := ¬∃f . 𝜇-recursive f ∧ . . .

Lemma (Analytic)
There is no 𝜇-recursive enumerator for the complement of the
halting problem.

Theorem (Analytic)
Given a 𝜇-recursive decider for p, there is a

n

𝜇-recursive
enumerator for the complement of the halting problem:

𝒟p → ℰ(HaltTM)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 42



Synthetic undecidability
Analytic definition

𝒰p := ¬∃f . 𝜇-recursive f ∧ . . .

Lemma (Synthetic)
There is no

𝜇-recursive

enumerator for the complement of the
halting problem, assuming CT.

Theorem (Synthetic)
Given a

𝜇-recursive

decider for p, there is an

𝜇-recursive

enumerator for the complement of the halting problem:

𝒟p → ℰ(HaltTM)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 42



Synthetic undecidability
Analytic definition

𝒰p := ¬∃f . 𝜇-recursive f ∧ . . .

Lemma (Synthetic)
There is no

𝜇-recursive

enumerator for the complement of the
halting problem, assuming CT.

Theorem (Synthetic)
Given a

𝜇-recursive

decider for p, there is an

𝜇-recursive

enumerator for the complement of the halting problem:

𝒟p → ℰ(HaltTM)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 42



Synthetic undecidability
Analytic definition

𝒰p := ¬∃f . 𝜇-recursive f ∧ . . .

Lemma (Synthetic)
There is no

𝜇-recursive

enumerator for the complement of the
halting problem, assuming CT.

Synthetic definition

𝒰p := 𝒟p → ℰ(HaltTM)

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 42



The Coq library of undecidability proofs

with Dominique Larchey-Wendling, Gert Smolka, Fabian Kunze, Max Wuttke . . .



The Coq library of undecidability proofs

with . . . Edith Heiter, Dominik Kirst, Simon Spies, Dominik Wehr



The Coq library of undecidability proofs



The Coq library of undecidability proofs

117k lines of code, 12 contributers, larger than the mathcomp core library



Models of computation

• Equivalence proofs for computability of relations Nk → N → P
• Identification of the weak call-by-value 𝜆-calculus as sweet spot

• extraction framework doing automatic computability proofs
• can be used to prove many-one equivalence between problems
• can be used to prove that SCT is a consequence of CT
• even works as a foundation for complexity theory, see Fabian Kunze’s work

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 44



Conclusion
• Machine-checked textbook proofs are feasible using synthetic

approach, proofs can focus on mathematical essence.
• CIC allows these proofs to be classical and is an ideal ground for

constructive reverse mathematics without choice.
• Lots of open questions regarding constructive status for even

basic results.
• Machine-checked undecidability proofs from cutting-edge

research are feasible, proofs can focus on inductive invariants.
• Avoid working in models of computation explicitly in a proof

assistant, unless it is the weak call-by-value 𝜆-calculus.

Thank you!

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 45



Conclusion
• Machine-checked textbook proofs are feasible using synthetic

approach, proofs can focus on mathematical essence.
• CIC allows these proofs to be classical and is an ideal ground for

constructive reverse mathematics without choice.
• Lots of open questions regarding constructive status for even

basic results.
• Machine-checked undecidability proofs from cutting-edge

research are feasible, proofs can focus on inductive invariants.
• Avoid working in models of computation explicitly in a proof

assistant, unless it is the weak call-by-value 𝜆-calculus.

Thank you!

02.06.2022 Yannick Forster: Synthetic Computability in Constructive Type Theory 45


	Computability Theory
	Machine-checked textbook proofs
	Results
	The Coq Library of Undecidability Proofs

