UNIVERSITAT

(OI0)
(] o

SAARLANDES

Synthetic Computability in
Constructive Type Theory

Yannick Forster

Inria, Gallinette Team, Nantes

Chocola Meeting Lyon, 02.06.2022

received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sktodowska-Curie grant agreement No. 101024493.

Work done over the last 7ish years, mostly at Saarland University.

Parts of the work are joint with Dominik Kirst, Gert Smolka, Felix
Jahn, Niklas Muck, Nils Lauermann, and Fabian Kunze.

The Coqg Undecidability Library has contributions by Dominique
Larchey-Wendling, Andrej Dudenhetfner, Edith Heiter, Marc Hermes,
Johannes Hostert, Dominik Kirst, Mark Koch, Fabian Kunze, Gert
Smolka, Simon Spies, Dominik Wehr, Maximilian Wuttke.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Lead questions

How to popularise synthetic computability theory?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Lead questions

How to popularise synthetic computability theory?

How to do constructive reverse analysis of
computability theory proofs?

How to do machine-checked proofs
in computability theory?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability Theory

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Recipe to write textbooks on computability

1. Introduce favourite model of computation
1.1 Prove s]" theorem (currying)

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)

3.4 Oracle computation and Turing reducibility

4. Prove undecidability of concrete problems (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Recipe to write textbooks on computability
1. Introduce favourite model of computation

1.1 Prove s]" theorem (currying)
1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem relying on Church Turing thesis

3.2 Rice’s theorem relying on Church Turing thesis
3.3 Reduction theory relying on Church Turing thesis
3.4 Oracle computation relying on Church Turing thesis

4. Prove undecidability (PCP, CFGs) relying on Church Turing thesis

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation
1.1 Prove s]" theorem (currying)

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation
1.1 Prove s theorem (currying)

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation
1.1 Prove s theorem (currying)

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation
1.1 Prove s theorem (currying)

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce intuitive computability and Church Turing thesis

3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation v
1.1 Prove s theorem (currying) v

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce-intuitive-computability-and-Church-Turing-thesis
3. Develop computability theory relying-on-Church-Turing thesis

3.1 Undecidability of the halting problem

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation v
1.1 Prove s theorem (currying) v

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce-intuitive-computability-and-Church-Turing-thesis
3. Develop computability theory relying-on-Church-Turing thesis

3.1 Undecidability of the halting problem v

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation v
1.1 Prove s theorem (currying) v

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce-intuitive-computability-and-Church-Turing-thesis
3. Develop computability theory relying-on-Church-Turing thesis

3.1 Undecidability of the halting problem v

3.2 Rice’s theorem
3.3 Reduction theory

3.4 Oracle computation

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Computability proofs machine-checked in proof assistants

1. Introduce favourite model of computation v
1.1 Prove s theorem (currying) v

1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Introduce-intuitive-computability-and-Church-Turing-thesis
3. Develop computability theory relying-on-Church-Turing thesis

3.1 Undecidability of the halting problem v

3.2 Rice’s theorem

3.3 Reduction theory ?
3.4 Oracle computation ?
?

4. Prove undecidability (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Theorem V For every m,n > 1, there exisls a recursive function s,™ of
m + 1 variables such that for all z, Y1, . . . , Ym,

Nyt zaled (W - YmRs, e 20| = Oy

Proof. Take the case m = n = 1. (Proof is analogous for the other
cases.) Consider the family of all partial functions of one variable which
are expressible as Az[¢.?(y,2)] for various z and y. Using our standard
formal characterization for functions of two variables, we can view this
as a new formal characterization for a class of partial recursive functions
of one variable. By Part III of the Basic Result, there exists a uniform
effective procedure for going from sets of instructions in this new charac-
terization to sets of instructions in the old. Hence, by Church’s Thesis,
there must be a recursive function f of two variables such that

N2 (4,2)] = @1

This f is our desired s;L[X

The informal argument by appeal to Church’s Thesis and Part III
of the Basic Result can be replaced by a formal proof. (Indeed, the func-
tions s,” can be shown to be primitive recursive.) We refer the reader
to Davis [1958] and Kleene [1952]. Theorem V is known as the s-m-n
theorem and is due to Kleene. Theorem V (together with Church’s Thesis)
is a tool of great range and power.

Tueorem 1.1, There i3 a primitive recicrsive juum'mr. ¥(r, y) auch
that, forn = 1,

[l €)= [y(r, w)lat(x).

Intuitively, this result may be interpreted, for A = ¢, n =1, as
declaring the existence of an algorithm® by means of which, given any
Turing machine Z and number m, a Turing machine Z, can be found
such that

¥z, z) = Vz,(z).
Now it is elear that there exist Turing machines Z, satisfying this last
relation sinee, for each fixed m, ¥2%(m,) is certainly a partial recursive
function of x. Hence, the content of our theorem (in this speeial case)
is that 2., can be found effectively in terms of Z and m. However, such
8 Z. can readily be described as a Turing machine which, beginning at
a = qu1*, proceeds to print i = 1"+ to the left, eventually arriving at
B = gqu1™'B1=*1, and then proceeds to aet like Z when confronted with

t Aetually, an slgorithm given by & prémitive recurgive funetion.

@l=+B11 As the general case does not differ essentially from this
speeial case, all that is required for a formal proof is a detailed construc-
tion of Z. and a careful consideration of the Gédel numbers. The reader
who wishes to omit the tedious details, and simply accept the result,
may well do so.

PROOF oF THEOREM L1, For esch value of y, let W, be the Turing
machine consisting of the following quadruples:

ml Ly

Q@BLg
i1 B 1 aiin
g1 1 L oaige
Gora B 1 gua

Then, with respect to W,

Q) > B
— q:BB(E)

Jisisy

-
=+ el T
Let r be a Godel number of a Turing machine Z, and let
B, = W,\J 2ot
Then, since the quadruples of Z®+2 have precisely the same effect on
@yesly, 1) that those of Z have on qa(y, £}, we have
FELA) = TG, 1) = I m
We now proceed to evaluate one of the Gidel numbers of Z, as a function

of rand y. The Gidel numbers of the quadruples that make up W, are
as follows:!

a=gn{plLg)=2%-3"-5- 7

b=gn(gBLg) =23 -55-78,
o] = gn (qua B 1 gua) = 24037510780, 1 =4 5y,
() = g (g L Logey) = 204033 - 507900, 1 59 =y,
ly) = g (gyes B 1 ges) = 200510 31 51 Taerlr,

Thus, if we let

¥
ely) =203 50 J] [Pr i + 8)90 Pr (i + g + 3],
=1

then ¢(y) is a primitive recursive funetion, and, for each y, ¢(y) is &
Gadel number of W,

We recall that the predicate IC (), which is true if and only if = is
the number associated with an internal configuration g, is primitive
recursive, sinee

=
IC (2) =+ \/ (2 = 4y +).
y=0
Henee, the function «{z), which is 1 when z is the number associnied
with a g, and 0 otherwise, is primitive recursive. If k is the Godel num-
ber of a quadruple, then the Gadel number of the quadruple obtained
from this ane by replacing each g, by geyes is

Sl y) = 2vEAbarie L GHeE . SE61 TR bR L T8 b,

Here, f(k,) is primitive recursive. Henee, if we let

200
Bryy) = H Pr (f)fictea,
=1
then #(r, y} is & primitive recursive function and, for each y, d(r, y) is 2
Godel number of Ze+®,
Let r{x) = L il = isa Godel number of a Turing machine; 0, otherwise.
Then, by (11) of Chap. 4, See. 1, r{x) is primitive recursive. Finally, let

wlry u) = (oly) » 60r, w))elr).
Then +{r, y) is & primitive recursive function and, for each y, ¥(r, y) isa
Godel number of Z,. Hence, by (1),
[l I (2™) = [ty 7). @)

It remains only to consider the case where r is not a Gédel number of a
Turing machine. In that ease, x(r,), as defined above, is 0 and, thus,
ia itselfl not the Godel number of & Turing machine; so (2) remains
correct.!

Tueonem 1.2 (Kleene's Iteration Theorem?). For sach m there ie a
primitive recursive funetion 8(r, y) such that, for n 2 1,

[JAat™, 170) = [S™(r, g~)]t (z™).

AWeda thet Mhamear T 1 2o cirmmde Thormare 1 3

seetion «<The s-Sms-$ns theorems

text <For all sm,
function $s°m_n$ with

n > 85 there is an $(m + 1)$-ary primitive recursive

A
\varphi p~{(m + n)}(c_1, \dots,cm, x 1,
\varphi_{s"m_ n{p, ¢ 1, \dots,c m)}"{{m)}(x 1,

\l
for all $p, € 1, \ldots, c.m, x 1,

represent by @{term *r_universal n"}:

text <The $s"m n$ functions
computing codes of the unary constant functions

fun code_constl ::
"code_constl B — 6
| "code_constl (Suc c)

"nat = nat" where

lenma code_constl: "code_constl c = encode (r_const
by (induction c) simp_all

definition "r_code constl aux =
Cn 3 r_prod_encode
[r_constn 2 3,
Cn 3 r_prod_encode
[r_constn 2 1,
Cn 3 r_prod_encode

\dots, x_n)
\dots,

\ldots, x ns. Here,
function universal for $ns-ary partial recursive functions

compute codes of functions

= quad_encode 3 1 1 (singleton_encode

x_n)

S\varphi~{(n)}$ is a
. which we will

We start simple:

[r_constn 2 1, Cn 3 r_singleton encode [Id 3 1]]]1"

lemma r code constl aux prim:

by (simp all ac.

“prim_recfn 3 r_code constl aux"

r_code_constl aux_def)

lemma r code constl aux:
"eval r code constl aux [i,

0,
by (simp add:

r_code_constl aux def)

definition “r_code constl

Llemma r_code_constl prim:

prim_recfn 1 r_code constl”
by (sinp_all ac

r_code_constl def r_code constl aux prim)

lenma r_code constl: “eval r_code constl [c]
13

Pr 1 Z r_code constl aux”
na\le 'ewal h e, x] code_constl c* for x
ing r_code_constl aux r_code constl def
by (induction &) (simp o1l
then show ?thesis by (simp add:

r_code_constl_aux_prim)

code_constl ¢

r_shrink (Pr 1 Z r_code constl aux)”

r_code_constl def r_code constl aux_prim)
qed

text <Functions that compute codes

definition code_constn

it

definition r_code constn

lemma r_code_constn_prim.
by (simp_all add:

"nat = nat = nat" where
mde constn n ¢ =
n =1 then code_constl ¢
else quad_encode 3 n (code_constl c)
enma code_constn: "code_constn (Suc n) c = ~(
unfolding code constn def using code constl r_constn def
by (cases *n = 07) simp all

"nat = recf® where
*r_code constn n =
if n = 1 then r_code constl
else
Cn 1 r _prod encode
[r_const 3,
Ch 1 r_prod_encode
[r_const n,
Cn 1 r_prod encode
[r_code constl,
Cn 1 r singleton encode
[Cn 1 r_prod_encode

of higher-arity constant functions:»

encode (r_constn n c)”

[r_const 2, Cn 1 r_prod encode [r const n, Z]]]1]]1"

prim_recfn 1 (r_code_constn n)*
r_code_constn_def r_code constl prim)

lenma r_code_constn: "eval (r_code constn n) [c] |- code_constn n c*

by (auto simp add:

text <Computing codes of Sm§-ary projections:

definition code id ::

lenma code_id:

"nat = nat = nat® where

code id m n = triple encode 2 m n"

"encode (Id m n) = code id m n”

unfolding code_id_def by simp

text <The functions $5°m_n$ are represented by the following function.

The value m corresponds to the length of @{term "cs®}.>

definition snn = nat = nat list = nat"
*smn

where
s = quad_encode

n
(encode (r_universal (n + length cs)))

(list_encode (code_constn n p # map (code_constn n) cs @ map (code_id n) [0,

lenma smn
assumes
shows.
(cn n
(r_universal (n + length cs))
(r_constn (n - 1) p # map (r_constn {n -

"n > 0"
san n p cs = encode

“r_constn (n - 1) p
map (r_constn (n - 1)) cs”

“7p # 7gsl @ 7gs2”
have “map encede 7gsl = map (code constn n) cs”

1)) cs @ (map (Id n) [0,

L))"

by (intro nth_equalityl; auto; metis code constn assms Suc_pred)

= map (code 1d n) [6..<n]"
by (rule nth_equalityl) (auto sirp add: code id def)
moreover have "encode ?p = code constn n p"

using assms code_constnfof *n - 1° p] by simp
ultimately have "map encode 7gs

code_constn n p # map (code_constn n)
by simp
then show ?thesis

qed

cs @ map (code id n) [0..<n]"

unfolding smn_def using assms encode.simps(4) by presburger

text <The next function is to help us define @{typ recfls correspondil

to the $s"m_n$ functions

It maps $m + 1S arguments p, c_1, \ldots, c_m to

an encoded List of length $m + n + 15. The Llist comprises the $m + 15 codes

of the Sn$-ary constants $p,

GLily
sn$-ary projections. -

definition r_smn_aux

"nat = nat = recf® where

\ldots, c_m$ and the n codes for all

(code_constl c))"

] |= quad encode 3 1 1 (singleton encode r)”

(singleton_encode (triple_encode 2 n 8))"

r_code_constn_def r_code constl code censtn_def r_cede constl prim)

L<n]))"

L1ist encode (map (code constn n) (p # cs) @ map (code 1d n) (@..
proof -
let 7s = "map (Ai. Cn (Suc m) (r_code constn n) [Id (Suc m) i)
let 7ys = "map (Ai.

<nl)

[0..<suc m1"

r_constn m (code id n 1)) [0..<n]"
have len_xs: inp

"length 7xs = Suc m" by

have map_xs: "map (Ag. eval g (p # cs)) ?xs = map Some (map (code constn n) (p # cs))"
proof (intro nth_equalityl)
show len: "length (map (Ao. eval g (p # cs)) ?xs) =
length (map Some (map (code constn n} {p # cs)))*
by (simp add: assms(2))
have “map (Ag. eval o (p # cs)) ?xs ! i = map Some (map (code constn n) (p # cs)) ! i
if "i < Suc m" for
proof -
have "map (Ag. eval o (p # cs)) 7xs ! i = (Ag. eval o (p # cs)) (7xs ! i)"
using len _xs that by (metis nth_map)
also hav . = eval (Cn (Suc m) (r_code_constn n) [Id (Suc m) i]) (p # cs)"
using that Le
by (HIEUS (no_1 lyDts. 1lifting) add.left_neutral length_map nth_map nth_upt)
also have ".

(r_code_constn n}

using r_code_constn_prim assms(2) that by sis

also have *. eval (r_code_constn n) [(p # =)
using len that by simp

finally have "map (ig. eval g (p # cs)) ?xs ! i |= code constn n ((p # cs)

using r_code constn by simp
then show Tthesis

using len xs len that by (metis length map nth map)

moreover have "length (map {\g. eval g (p # cs)) 7xs)
ultinately show "Ai. i < length (map Vg.

Ve

Tthe (eval (Id (Suc m) 1) (p # cs))]”

map (Ag. eval g (p # cs)) 7xs | i
map Some (map (code constn n) (p # cs))
by simp

q
moreover have *map (g. eval g (p ¥ cs)) 7ys
using assms(2)
ultinately have “map (Ag.
map Some (map (code constn n)
by (metis map_append)
moreover have "map (Ax. the (eval x (p # cs)))
map the (map (Ax. eval x (p ¥ cs)) (7xs @

ultinately have *: "map (Ag. the (eval g (p #
(map (code_constn n) (p # cs) @ nap (code
by sinp

have “vi<length 7xs. eval (7xs ! 1) (p # cs) =
by (metis nth_map)

then have
“yi<length 7xs. eval (7xs !
using map_xs by simp

then have "Viclength 7?xs. eval (?xs ! 1)

by (intro nth equalityl; auto)
eval g (p # cs)) (7xs @ 7
(p # cs) @ map ((ude id n) (6.

Ly
= Suc m" by simp
eval g (p # cs)) 7xs) =
]
map Some (map (code id n) [B..<n])"

<n])”

(xs @ 7ys) =
?ys))”

es))) (715@ 7ys)
id n) [8..<n])

map (Ag. eval g (p # cs)) ?xs ! 1"

i) (p # cs) = map Some (map (code constn n) (p # cs)) !

(p #cs) |"

using assms map_xs by (metis length map nth map option.simps(3))

then have xs_converg: "vzeset 7xs. eval z

(o #
by (metis in set_conv_nth)
have "Vi<length ?ys. eval (7ys ! 1) {p # ¢s) =
by sinp
then have

"¥i<length ?ys. eval (?ys | 1) (p # cs)
using assms(2) by simp
then naue "¥i<length ?ys. eval (2ys ! 1)
by s
then have “Vzcset (%xs e ?ys). eval z (p # cs)
using xs_converg by a
moreover have *recfn (lrnutl\ (p # cs))
using assms r_code_constn_prim by auto
ultimately have "eval (r_smn_aux n m) (p #
eval (r_list_encode {m + n)) (map (Ag. the (
unfolding r_smn_aux_def using assms by simp
then I\auc "eval (r_smn_aux n m) (p # cs) =
(] llst =nmde (n + n)) (map (code_cons
using * by m
moreover have “ltngth (s @ 7ys) =
ultimately show ?thesis

= map

(Cn (Suc

Suc (m + n)"

qed

text <For all $m, n > 0%, the @{typ recf} corresponding to $s

given by the next function

definition r_smn :
"r_smn nm
Cn (Suc m) r_prod encode
[r_constn m 3,
Cn (Suc m) r_prod_encode
[r_constn m n.

“nat = nat = recf" where

<s) "
map (Ax. eval x (p # cs)) ?ys ! 1"

Some (map (code_id n) [6..<n]) ! 1"

(p #cs) |"

0

m) (r_list_encode (m + n))
eval g (p # cs))) (7xs @ ?ys))”

tn n) (p# cs) @map (code_id n) [8.

by simp

using r_list_encode * assms(1) by {metis (no_types, lifting) Llength_map)

m s is

(?xs @ ?ys))"

lenma r_smn_prim [sinp]

Cn (Suc) r prod encode
[r_constn m (encode (r universal (n + m))),

n>ae
by (simp all add

r_smn_def r_swn_aux_prim}

lemma r_smn:

assumes

“n > 8" and “length cs = m"
shows "

eval (r_smn nm) (p # cs)

= smn n p cs®

r_smn_aux

n et

— prim_recfn (Suc m) (r_san n m)*

using assms r smn_def r_smn_aux smn_def r_smn auwx prim by simp

lemma map_eval Some the:

text <The essential part of the $s§-Sm$-Sn$ theorem:

assume

map (Ag. eval g xs) gs = map Some ys”
shows "map (Ag. the (eval g xs)) gs = ys"
using assms

by (metis (no_types, lifting) length map nth_equalityl nth_map option.sel)

For all sm, n > 0§
the function $s°m_ns satisfies
Al
\varphi_p~{(m + n)}(c_1, \dots,c_m, x 1, \dots, x_n) —
\varphi_{s"m n(p, ¢ 1, \dots,c_m) }*{{m}(x_1, \dots, x_n)
Al for all sp, ¢ i, x 35.>
lemma smn_lemma:
assumes "n > 6" and len_cs: "length cs — m" and len_xs: "length xs
shows "eval (r_universal (m + n)) (p # s @ xs) =

eval (r_universal n)
-r,smn nnt

(ra M (0 1:ngth cs))
(r_constn (n - 1) p #

have "eval ?s (p # cs) J.f san np c

have

then have 5

let 7g5 = *

assms r_smn by

Seval 75 (p # cs) |= encode 7f"
by (simp add: assms(1) smn)
recfn n 7f"

ing len_cs assms by auto

"eval (r_universal n) ({encode ?f) # xs)

= eval 7f
using r_universallof ?f n, OF _ len xs] by sinp

r_constn (n - 1) p # map (r_constn (n - 1)) cs @ map

((the (eval (r_smn n m) (p # cs))) # xs)"

map (r_constn (n - 1)) cs @ (map (Id n) [0..<n]})"

xs*®

(Id n) [0

co<n]®

i

w<n])"

Show "Length (map [g.

qed
ultimately show "map (Ag. the (eval g xs)) 7gs ! i

using that by simp
ed

(Vp cs xs.

the (eval g xsJ]

osT

Tength
by (simp add: len_x:

have len: "length (mau (Ag. the (eval g xs))
by (simp add: len_cs)
moreover have "map (Ag lhe ltval axs)) 205 ! i=(p
if "1 < Suc (m + n)" f
proof -
from that consider "i = 8" | "i > 8 A i < Suc m* |
using not_le_imp_less by auto
then show Pthesis
proof (cases)
case 1

then show Pthesis using assms(1) len_xs by simp

then have "?gs ! i =
using len_cs

(map (r_constn (n - 1)) cs) !

o # cs @ xs)

?gs) = Suc (m + n)*

#cs@xs) !t

"Sucm < i AQ<Suc (m+)"

G-

by (metis One_nat_def Suc_less_eq Suc_pred length_map

less_numeral_extra(3) nth_Cons’

nth aupemn
then have
X

"map (ig. the {eval g xs)) ?gs !
(Ag. the (eval g xs)) ((map (r_constn (u -1)
using len by (netis length map nth map that)
also have = the (eval ((r_constn (n - 1) (cs !
using 2 len cs by auto
also have *... =cs ! (i - 1)"
using r_constn Len xs assms(1) hy simp
also have *... = (p # cs @ x5) !
using 2 len cs
by (metis diff Suc 1 less Suc eq 0 disj less nume
finally show ?thesis .
next
case 3
then have "7gs ! i
using len cs

= (map (Id n) [6..<n])

cs) b i - 1))"

(1 - 1)) xs)"

ral_extra(3) nth Cons' nth_append)

(i - Suc m®

by (simp: metis (no_types, lifting) One nat def Suc less eq add leE
plus 1 eq Suc diff diff left length map not le nth_append
ordered_cancel comm monoid diff class.add diff inverse)

then have "map (g, the (eval g xs)) 7gs ! i
(Ag. the (eval g xs)) ((map (Id n) [0..<n]) !
using len by (metis length map nth map th:
also have "... = the (eval ((1d n (i - Suc m))) xs)"
using 3 Llen cs by auto
also have s 1 (i - Sucm)”
using len xs 3 by suto
also have oo
using len cs len xs

(1 - suc m))"

by (metis diff Suc x 4iff diff left less Suc eq @ disj not le nth Cons'

nth_append plus 1 eq Suc)
finally show 7thesis

ned

if "1 < length (map (Ag. the

q
ultinately show 7thesis by simp
a

theorem smn_theorem:
assumes “n > 8"

prim_recfn (Suc m) s A
Tength cs = m A length xs = n —
eval (r_universal (m + n)) (p # cs @ xs)
eval (r_universal n) ((the (eval s (p # cs))) # x5))"
smn_lewna exI[of _ "r_smn n m"] assms by sinp

= (p#cs@uxs) ! it
(eval g xs)) 7gs)" fer i

Is there a need for machine-checked computability proofs?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Is there a need for machine-checked computability proofs?

1932 Goédel claims without proof that his decidability proof for the
[3*v23* all, (0)] fragment of FOL could be extended to include equality.

... Lots of results depend on Gddel’s claim.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Is there a need for machine-checked computability proofs?

1932 Goédel claims without proof that his decidability proof for the
[3*v23* all, (0)] fragment of FOL could be extended to include equality.

... Lots of results depend on Gddel’s claim.
1984 Goldfarb proves the undecidability of this fragment.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Is there a need for machine-checked computability proofs?

1932 Godel claims without proof that his decidability proof for the
[3*v23*, all, (0)] fragment of FOL could be extended to include equality.

... Lots of results depend on Godel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Is there a need for machine-checked computability proofs?

1932 Godel claims without proof that his decidability proof for the
[3*v23*, all, (0)] fragment of FOL could be extended to include equality.

... Lots of results depend on Godel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Is there a need for machine-checked computability proofs?

1932 Godel claims without proof that his decidability proof for the
[3*v23* all, (0)] fragment of FOL could be extended to include equality.

... Lots of results depend on Godel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn prove the decidability of semi-unification.
1993 Kfoury, Tiuryn, and Urzyczyn prove the undecidability of semi-unification.
2015 Bimbo proves decidability of the MELL-fragment of linear logic.
2019 StralBburger disputes proof, leaving status of problem unresolved.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Machine-checked textbook proofs

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Theorem V For every m,n > 1, there exisls a recursive function s,™ of
m + 1 variables such that for all z, Y1, . . . , Ym,

Nyt zaled (W - YmRs, e 20| = Oy

Proof. Take the case m = n = 1. (Proof is analogous for the other
cases.) Consider the family of all partial functions of one variable which
are expressible as Az[¢.?(y,2)] for various z and y. Using our standard
formal characterization for functions of two variables, we can view this
as a new formal characterization for a class of partial recursive functions
of one variable. By Part III of the Basic Result, there exists a uniform
effective procedure for going from sets of instructions in this new charac-
terization to sets of instructions in the old. Hence, by Church’s Thesis,
there must be a recursive function f of two variables such that

N2 (4,2)] = @1

This f is our desired s;L[X

The informal argument by appeal to Church’s Thesis and Part III
of the Basic Result can be replaced by a formal proof. (Indeed, the func-
tions s,” can be shown to be primitive recursive.) We refer the reader
to Davis [1958] and Kleene [1952]. Theorem V is known as the s-m-n
theorem and is due to Kleene. Theorem V (together with Church’s Thesis)
is a tool of great range and power.

Tueorem 1.1, There i3 a primitive recicrsive juum'mr. ¥(r, y) auch
that, forn = 1,

[l €)= [y(r, w)lat(x).

Intuitively, this result may be interpreted, for A = ¢, n =1, as
declaring the existence of an algorithm® by means of which, given any
Turing machine Z and number m, a Turing machine Z, can be found
such that

¥z, z) = Vz,(z).
Now it is elear that there exist Turing machines Z, satisfying this last
relation sinee, for each fixed m, ¥2%(m,) is certainly a partial recursive
function of x. Hence, the content of our theorem (in this speeial case)
is that 2., can be found effectively in terms of Z and m. However, such
8 Z. can readily be described as a Turing machine which, beginning at
a = qu1*, proceeds to print i = 1"+ to the left, eventually arriving at
B = gqu1™'B1=*1, and then proceeds to aet like Z when confronted with

t Aetually, an slgorithm given by & prémitive recurgive funetion.

@l=+B11 As the general case does not differ essentially from this
speeial case, all that is required for a formal proof is a detailed construc-
tion of Z. and a careful consideration of the Gédel numbers. The reader
who wishes to omit the tedious details, and simply accept the result,
may well do so.

PROOF oF THEOREM L1, For esch value of y, let W, be the Turing
machine consisting of the following quadruples:

ml Ly

Q@BLg
i1 B 1 aiin
g1 1 L oaige
Gora B 1 gua

Then, with respect to W,

Q) > B
— q:BB(E)

Jisisy

-
=+ el T
Let r be a Godel number of a Turing machine Z, and let
B, = W,\J 2ot
Then, since the quadruples of Z®+2 have precisely the same effect on
@yesly, 1) that those of Z have on qa(y, £}, we have
FELA) = TG, 1) = I m
We now proceed to evaluate one of the Gidel numbers of Z, as a function

of rand y. The Gidel numbers of the quadruples that make up W, are
as follows:!

a=gn{plLg)=2%-3"-5- 7

b=gn(gBLg) =23 -55-78,
o] = gn (qua B 1 gua) = 24037510780, 1 =4 5y,
() = g (g L Logey) = 204033 - 507900, 1 59 =y,
ly) = g (gyes B 1 ges) = 200510 31 51 Taerlr,

Thus, if we let

¥
ely) =203 50 J] [Pr i + 8)90 Pr (i + g + 3],
=1

then ¢(y) is a primitive recursive funetion, and, for each y, ¢(y) is &
Gadel number of W,

We recall that the predicate IC (), which is true if and only if = is
the number associated with an internal configuration g, is primitive
recursive, sinee

=
IC (2) =+ \/ (2 = 4y +).
y=0
Henee, the function «{z), which is 1 when z is the number associnied
with a g, and 0 otherwise, is primitive recursive. If k is the Godel num-
ber of a quadruple, then the Gadel number of the quadruple obtained
from this ane by replacing each g, by geyes is

Sl y) = 2vEAbarie L GHeE . SE61 TR bR L T8 b,

Here, f(k,) is primitive recursive. Henee, if we let

200
Bryy) = H Pr (f)fictea,
=1
then #(r, y} is & primitive recursive function and, for each y, d(r, y) is 2
Godel number of Ze+®,
Let r{x) = L il = isa Godel number of a Turing machine; 0, otherwise.
Then, by (11) of Chap. 4, See. 1, r{x) is primitive recursive. Finally, let

wlry u) = (oly) » 60r, w))elr).
Then +{r, y) is & primitive recursive function and, for each y, ¥(r, y) isa
Godel number of Z,. Hence, by (1),
[l I (2™) = [ty 7). @)

It remains only to consider the case where r is not a Gédel number of a
Turing machine. In that ease, x(r,), as defined above, is 0 and, thus,
ia itselfl not the Godel number of & Turing machine; so (2) remains
correct.!

Tueonem 1.2 (Kleene's Iteration Theorem?). For sach m there ie a
primitive recursive funetion 8(r, y) such that, for n 2 1,

[JAat™, 170) = [S™(r, g~)]t (z™).

AWeda thet Mhamear T 1 2o cirmmde Thormare 1 3

seetion «<The s-Sms-$ns theorems

text <For all sm,
function $s°m_n$ with

n > 85 there is an $(m + 1)$-ary primitive recursive

A
\varphi p~{(m + n)}(c_1, \dots,cm, x 1,
\varphi_{s"m_ n{p, ¢ 1, \dots,c m)}"{{m)}(x 1,

\l
for all $p, € 1, \ldots, c.m, x 1,

represent by @{term *r_universal n"}:

text <The $s"m n$ functions
computing codes of the unary constant functions

fun code_constl ::
"code_constl B — 6
| "code_constl (Suc c)

"nat = nat" where

lenma code_constl: "code_constl c = encode (r_const
by (induction c) simp_all

definition "r_code constl aux =
Cn 3 r_prod_encode
[r_constn 2 3,
Cn 3 r_prod_encode
[r_constn 2 1,
Cn 3 r_prod_encode

\dots, x_n)
\dots,

\ldots, x ns. Here,
function universal for $ns-ary partial recursive functions

compute codes of functions

= quad_encode 3 1 1 (singleton_encode

x_n)

S\varphi~{(n)}$ is a
. which we will

We start simple:

[r_constn 2 1, Cn 3 r_singleton encode [Id 3 1]]]1"

lemma r code constl aux prim:

by (simp all ac.

“prim_recfn 3 r_code constl aux"

r_code_constl aux_def)

lemma r code constl aux:
"eval r code constl aux [i,

0,
by (simp add:

r_code_constl aux def)

definition “r_code constl

Llemma r_code_constl prim:

prim_recfn 1 r_code constl”
by (sinp_all ac

r_code_constl def r_code constl aux prim)

lenma r_code constl: “eval r_code constl [c]
13

Pr 1 Z r_code constl aux”
na\le 'ewal h e, x] code_constl c* for x
ing r_code_constl aux r_code constl def
by (induction &) (simp o1l
then show ?thesis by (simp add:

r_code_constl_aux_prim)

code_constl ¢

r_shrink (Pr 1 Z r_code constl aux)”

r_code_constl def r_code constl aux_prim)
qed

text <Functions that compute codes

definition code_constn

it

definition r_code constn

lemma r_code_constn_prim.
by (simp_all add:

"nat = nat = nat" where
mde constn n ¢ =
n =1 then code_constl ¢
else quad_encode 3 n (code_constl c)
enma code_constn: "code_constn (Suc n) c = ~(
unfolding code constn def using code constl r_constn def
by (cases *n = 07) simp all

"nat = recf® where
*r_code constn n =
if n = 1 then r_code constl
else
Cn 1 r _prod encode
[r_const 3,
Ch 1 r_prod_encode
[r_const n,
Cn 1 r_prod encode
[r_code constl,
Cn 1 r singleton encode
[Cn 1 r_prod_encode

of higher-arity constant functions:»

encode (r_constn n c)”

[r_const 2, Cn 1 r_prod encode [r const n, Z]]]1]]1"

prim_recfn 1 (r_code_constn n)*
r_code_constn_def r_code constl prim)

lenma r_code_constn: "eval (r_code constn n) [c] |- code_constn n c*

by (auto simp add:

text <Computing codes of Sm§-ary projections:

definition code id ::

lenma code_id:

"nat = nat = nat® where

code id m n = triple encode 2 m n"

"encode (Id m n) = code id m n”

unfolding code_id_def by simp

text <The functions $5°m_n$ are represented by the following function.

The value m corresponds to the length of @{term "cs®}.>

definition snn = nat = nat list = nat"
*smn

where
s = quad_encode

n
(encode (r_universal (n + length cs)))

(list_encode (code_constn n p # map (code_constn n) cs @ map (code_id n) [0,

lenma smn
assumes
shows.
(cn n
(r_universal (n + length cs))
(r_constn (n - 1) p # map (r_constn {n -

"n > 0"
san n p cs = encode

“r_constn (n - 1) p
map (r_constn (n - 1)) cs”

“7p # 7gsl @ 7gs2”
have “map encede 7gsl = map (code constn n) cs”

1)) cs @ (map (Id n) [0,

L))"

by (intro nth_equalityl; auto; metis code constn assms Suc_pred)

= map (code 1d n) [6..<n]"
by (rule nth_equalityl) (auto sirp add: code id def)
moreover have "encode ?p = code constn n p"

using assms code_constnfof *n - 1° p] by simp
ultimately have "map encode 7gs

code_constn n p # map (code_constn n)
by simp
then show ?thesis

qed

cs @ map (code id n) [0..<n]"

unfolding smn_def using assms encode.simps(4) by presburger

text <The next function is to help us define @{typ recfls correspondil

to the $s"m_n$ functions

It maps $m + 1S arguments p, c_1, \ldots, c_m to

an encoded List of length $m + n + 15. The Llist comprises the $m + 15 codes

of the Sn$-ary constants $p,

GLily
sn$-ary projections. -

definition r_smn_aux

"nat = nat = recf® where

\ldots, c_m$ and the n codes for all

(code_constl c))"

] |= quad encode 3 1 1 (singleton encode r)”

(singleton_encode (triple_encode 2 n 8))"

r_code_constn_def r_code constl code censtn_def r_cede constl prim)

L<n]))"

L1ist encode (map (code constn n) (p # cs) @ map (code 1d n) (@..
proof -
let 7s = "map (Ai. Cn (Suc m) (r_code constn n) [Id (Suc m) i)
let 7ys = "map (Ai.

<nl)

[0..<suc m1"

r_constn m (code id n 1)) [0..<n]"
have len_xs: inp

"length 7xs = Suc m" by

have map_xs: "map (Ag. eval g (p # cs)) ?xs = map Some (map (code constn n) (p # cs))"
proof (intro nth_equalityl)
show len: "length (map (Ao. eval g (p # cs)) ?xs) =
length (map Some (map (code constn n} {p # cs)))*
by (simp add: assms(2))
have “map (Ag. eval o (p # cs)) ?xs ! i = map Some (map (code constn n) (p # cs)) ! i
if "i < Suc m" for
proof -
have "map (Ag. eval o (p # cs)) 7xs ! i = (Ag. eval o (p # cs)) (7xs ! i)"
using len _xs that by (metis nth_map)
also hav . = eval (Cn (Suc m) (r_code_constn n) [Id (Suc m) i]) (p # cs)"
using that Le
by (HIEUS (no_1 lyDts. 1lifting) add.left_neutral length_map nth_map nth_upt)
also have ".

(r_code_constn n}

using r_code_constn_prim assms(2) that by sis

also have *. eval (r_code_constn n) [(p # =)
using len that by simp

finally have "map (ig. eval g (p # cs)) ?xs ! i |= code constn n ((p # cs)

using r_code constn by simp
then show Tthesis

using len xs len that by (metis length map nth map)

moreover have "length (map {\g. eval g (p # cs)) 7xs)
ultinately show "Ai. i < length (map Vg.

Ve

Tthe (eval (Id (Suc m) 1) (p # cs))]”

map (Ag. eval g (p # cs)) 7xs | i
map Some (map (code constn n) (p # cs))
by simp

q
moreover have *map (g. eval g (p ¥ cs)) 7ys
using assms(2)
ultinately have “map (Ag.
map Some (map (code constn n)
by (metis map_append)
moreover have "map (Ax. the (eval x (p # cs)))
map the (map (Ax. eval x (p ¥ cs)) (7xs @

ultinately have *: "map (Ag. the (eval g (p #
(map (code_constn n) (p # cs) @ nap (code
by sinp

have “vi<length 7xs. eval (7xs ! 1) (p # cs) =
by (metis nth_map)

then have
“yi<length 7xs. eval (7xs !
using map_xs by simp

then have "Viclength 7?xs. eval (?xs ! 1)

by (intro nth equalityl; auto)
eval g (p # cs)) (7xs @ 7
(p # cs) @ map ((ude id n) (6.

Ly
= Suc m" by simp
eval g (p # cs)) 7xs) =
]
map Some (map (code id n) [B..<n])"

<n])”

(xs @ 7ys) =
?ys))”

es))) (715@ 7ys)
id n) [8..<n])

map (Ag. eval g (p # cs)) ?xs ! 1"

i) (p # cs) = map Some (map (code constn n) (p # cs)) !

(p #cs) |"

using assms map_xs by (metis length map nth map option.simps(3))

then have xs_converg: "vzeset 7xs. eval z

(o #
by (metis in set_conv_nth)
have "Vi<length ?ys. eval (7ys ! 1) {p # ¢s) =
by sinp
then have

"¥i<length ?ys. eval (?ys | 1) (p # cs)
using assms(2) by simp
then naue "¥i<length ?ys. eval (2ys ! 1)
by s
then have “Vzcset (%xs e ?ys). eval z (p # cs)
using xs_converg by a
moreover have *recfn (lrnutl\ (p # cs))
using assms r_code_constn_prim by auto
ultimately have "eval (r_smn_aux n m) (p #
eval (r_list_encode {m + n)) (map (Ag. the (
unfolding r_smn_aux_def using assms by simp
then I\auc "eval (r_smn_aux n m) (p # cs) =
(] llst =nmde (n + n)) (map (code_cons
using * by m
moreover have “ltngth (s @ 7ys) =
ultimately show ?thesis

= map

(Cn (Suc

Suc (m + n)"

qed

text <For all $m, n > 0%, the @{typ recf} corresponding to $s

given by the next function

definition r_smn :
"r_smn nm
Cn (Suc m) r_prod encode
[r_constn m 3,
Cn (Suc m) r_prod_encode
[r_constn m n.

“nat = nat = recf" where

<s) "
map (Ax. eval x (p # cs)) ?ys ! 1"

Some (map (code_id n) [6..<n]) ! 1"

(p #cs) |"

0

m) (r_list_encode (m + n))
eval g (p # cs))) (7xs @ ?ys))”

tn n) (p# cs) @map (code_id n) [8.

by simp

using r_list_encode * assms(1) by {metis (no_types, lifting) Llength_map)

m s is

(?xs @ ?ys))"

lenma r_smn_prim [sinp]

Cn (Suc) r prod encode
[r_constn m (encode (r universal (n + m))),

n>ae
by (simp all add

r_smn_def r_swn_aux_prim}

lemma r_smn:

assumes

“n > 8" and “length cs = m"
shows "

eval (r_smn nm) (p # cs)

= smn n p cs®

r_smn_aux

n et

— prim_recfn (Suc m) (r_san n m)*

using assms r smn_def r_smn_aux smn_def r_smn auwx prim by simp

lemma map_eval Some the:

text <The essential part of the $s§-Sm$-Sn$ theorem:

assume

map (Ag. eval g xs) gs = map Some ys”
shows "map (Ag. the (eval g xs)) gs = ys"
using assms

by (metis (no_types, lifting) length map nth_equalityl nth_map option.sel)

For all sm, n > 0§
the function $s°m_ns satisfies
Al
\varphi_p~{(m + n)}(c_1, \dots,c_m, x 1, \dots, x_n) —
\varphi_{s"m n(p, ¢ 1, \dots,c_m) }*{{m}(x_1, \dots, x_n)
Al for all sp, ¢ i, x 35.>
lemma smn_lemma:
assumes "n > 6" and len_cs: "length cs — m" and len_xs: "length xs
shows "eval (r_universal (m + n)) (p # s @ xs) =

eval (r_universal n)
-r,smn nnt

(ra M (0 1:ngth cs))
(r_constn (n - 1) p #

have "eval ?s (p # cs) J.f san np c

have

then have 5

let 7g5 = *

assms r_smn by

Seval 75 (p # cs) |= encode 7f"
by (simp add: assms(1) smn)
recfn n 7f"

ing len_cs assms by auto

"eval (r_universal n) ({encode ?f) # xs)

= eval 7f
using r_universallof ?f n, OF _ len xs] by sinp

r_constn (n - 1) p # map (r_constn (n - 1)) cs @ map

((the (eval (r_smn n m) (p # cs))) # xs)"

map (r_constn (n - 1)) cs @ (map (Id n) [0..<n]})"

xs*®

(Id n) [0

co<n]®

i

w<n])"

Show "Length (map [g.

qed
ultimately show "map (Ag. the (eval g xs)) 7gs ! i

using that by simp
ed

(Vp cs xs.

the (eval g xsJ]

osT

Tength
by (simp add: len_x:

have len: "length (mau (Ag. the (eval g xs))
by (simp add: len_cs)
moreover have "map (Ag lhe ltval axs)) 205 ! i=(p
if "1 < Suc (m + n)" f
proof -
from that consider "i = 8" | "i > 8 A i < Suc m* |
using not_le_imp_less by auto
then show Pthesis
proof (cases)
case 1

then show Pthesis using assms(1) len_xs by simp

then have "?gs ! i =
using len_cs

(map (r_constn (n - 1)) cs) !

o # cs @ xs)

?gs) = Suc (m + n)*

#cs@xs) !t

"Sucm < i AQ<Suc (m+)"

G-

by (metis One_nat_def Suc_less_eq Suc_pred length_map

less_numeral_extra(3) nth_Cons’

nth aupemn
then have
X

"map (ig. the {eval g xs)) ?gs !
(Ag. the (eval g xs)) ((map (r_constn (u -1)
using len by (netis length map nth map that)
also have = the (eval ((r_constn (n - 1) (cs !
using 2 len cs by auto
also have *... =cs ! (i - 1)"
using r_constn Len xs assms(1) hy simp
also have *... = (p # cs @ x5) !
using 2 len cs
by (metis diff Suc 1 less Suc eq 0 disj less nume
finally show ?thesis .
next
case 3
then have "7gs ! i
using len cs

= (map (Id n) [6..<n])

cs) b i - 1))"

(1 - 1)) xs)"

ral_extra(3) nth Cons' nth_append)

(i - Suc m®

by (simp: metis (no_types, lifting) One nat def Suc less eq add leE
plus 1 eq Suc diff diff left length map not le nth_append
ordered_cancel comm monoid diff class.add diff inverse)

then have "map (g, the (eval g xs)) 7gs ! i
(Ag. the (eval g xs)) ((map (Id n) [0..<n]) !
using len by (metis length map nth map th:
also have "... = the (eval ((1d n (i - Suc m))) xs)"
using 3 Llen cs by auto
also have s 1 (i - Sucm)”
using len xs 3 by suto
also have oo
using len cs len xs

(1 - suc m))"

by (metis diff Suc x 4iff diff left less Suc eq @ disj not le nth Cons'

nth_append plus 1 eq Suc)
finally show 7thesis

ned

if "1 < length (map (Ag. the

q
ultinately show 7thesis by simp
a

theorem smn_theorem:
assumes “n > 8"

prim_recfn (Suc m) s A
Tength cs = m A length xs = n —
eval (r_universal (m + n)) (p # cs @ xs)
eval (r_universal n) ((the (eval s (p # cs))) # x5))"
smn_lewna exI[of _ "r_smn n m"] assms by sinp

= (p#cs@uxs) ! it
(eval g xs)) 7gs)" fer i

Synthetic mathematics to the rescue

Analytic mathematics
Objects of del structures under
the logic moade investigation

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic mathematics to the rescue

Analytic mathematics
Objects of del structures under
the logic mode investigation

Synthetic mathematics*
Objects of t qint structures under
the logic are turned into investigation

via axioms

*only possible in constructive mathematics

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic mathematics to the rescue

Analytic mathematics
Objects of del structures under
the logic moade investigation

Synthetic mathematics*
Objects of t qint structures under
the logic are turned into investigation

via axioms

*only possible in constructive mathematics

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Constructive mathematics to the rescue

Church-Turing thesis:
“Every effectively calculable function is u-recursive.”

Kreisel [1965]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Constructive mathematics to the rescue

Church-Turing thesis:
“Every effectively calculable function is u-recursive.”

as an axiom in constructive mathematics
CT:=Vf:N — N. dc: N. VX. ¢cx > fx

where ¢cx is the value of the c-th u-recursive function with input x

Kreisel [1965]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Overview

1. Axiom-free “synthetic” computability

2. The axiom CT and it’s status in Coq

3. Fully Synthetic Computability a la Richman and Bauer
4. Synthetic Computability without choice

5. Results

6. The Coq Library of Undecidability Proofs

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Definitions

Decidability

df : N — B.Vx. px « fx = true df : N — B.Vx. px < fx = true
A f is computable

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Definitions

Decidability

df : N — B.Vx. px « fx = true df : N — B.Vx. px < fx = true

A f is computable
Semi-decidability

df : N —= N.Vx. px < fx | df : N — B.Vx. px < fx |
N f is computable

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Definitions

Decidability

df : N — B.Vx. px « fx = true df : N — B.Vx. px < fx = true
A f is computable
Semi-decidability
df : N —= N.Vx. px < fx | df : N — B.Vx. px < fx |

N f is computable
Many-one reducibility

df : N — N.Vx. px < q(fx) df : N — N.Vx. px < q(fx)
N f is computable

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Definitions

Decidability

df : N — B.Vx. px « fx = true df : N — B.Vx. px < fx = true

A f is computable
Semi-decidability

df : N —= N.Vx. px < fx | df : N — B.Vx. px < fx |

N f is computable
Many-one reducibility

df : N — N.Vx. px < q(fx) df : N — N.Vx. px < q(fx)
N f is computable

Enumerability, one-one reducibility, truth-table reducibility, ...

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Axiom-free synthetic computability |

Myhill’s isomorphism theorem

jww Felix Jahn and Gert Smolka [TYPES '22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is inconsistent in classical systems. ..

...because the characteristic function of the self-halting problem
is not general recursive.

fn :

if ohn | then 1 else O

Troelstra and van Dalen [1988]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is inconsistent in classical systems. ..

...because the characteristic function of the self-halting problem
is not general recursive.

fn :

if ohn | then 1 else O

Formally in ZF:
fi= {(ns 1) | pnh i} U {(n= O) | Pnh T}

Now f is a total functional relation because f is ...

vlfunctional
[1total

Troelstra and van Dalen [1988]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is inconsistent in classical systems. ..

...because the characteristic function of the self-halting problem
is not general recursive.

fn = if ppn | then 1 else O
Formally in ZF:

fi= {(ns 1) | pnh i/} U {(n= O) | Pnh T}

Now f is a total functional relation because f is ...

vIfunctional
Vitotal (proof by contradiction)

Troelstra and van Dalen [1988]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is inconsistent in classical systems. ..

...because the characteristic function of the self-halting problem
is not general recursive.

fn = if ppn | then 1 else O
Formally in ZF:

fi= {(ns 1) | pnh i/} U {(n= O) | Pnh T}

Now f is a total set-theoretic function because f is ...

vIfunctional
Vitotal (proof by contradiction)

Troelstra and van Dalen [1988]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is consistent in constructive systems

CT :=Vf:N — N.f is general recursive

* Heyting arithmetic, Kleene [1945]
* Bishop’s constructive mathematics / Martin-L6f Type Theory

 HoT' T (MLTT + propositional truncation + univalence),
Swan and Uemura [2019]

* MLTT, Yamada [2020]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Slogans of (Coqg’s) Type Theory

Types and functions are native

* Inductive types N, B, A x B and so on

* The function type A — B consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively

* Propositions are types

* Proofs are programs

e (Total, functional) relations are functions A - B — P
» Classical principles are independent:

DNE =VP:P. -—-P > P LEM:=VP :P. PV -P

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Slogans of (Coq’s) Type Theory CIC

Types and functions are native

* Inductive types N, B, A x B and so on

* The function type A — B consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively

* Propositions are types in a separate, impredicative universe P
* Proofs are programs, no large eliminations from P to T

e (Total, functional) relations are functions A - B — P

» Classical principles are independent:

DNE =VP:P. -—-P > P LEM:=VP :P. PV -P

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT seems to be admissible in CIC

Meta-theoretically:
For every closed term

I_CIC f:N—-N
one can construct a code ¢ with I_ClC c . N s.t.

~cic € computes f

Follows from semantic extraction theorem for Coq [Letouzey, 2004]
Mechanised proof using weak call-by-value A-calculus?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is not inconsistent in CIC

fn := if ppn | then true else false

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is not inconsistent in CIC

fn := if ppn | then true else false

decision can not be implemented

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is not inconsistent in CIC

fn := if ppn | then true else false

However, we can define the graph relationG: N - B — P

Gnb = ppn | < b = true

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is not inconsistent in CIC

fn := if ppn | then true else false

However, we can define the graph relationG: N - B — P

Gnb = ppn | < b = true
V1 @G is functional
[1@G is total

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

CT is not inconsistent in CIC

fn := if ppn | then true else false

However, we can define the graph relationG: N —- B — P

Gnb = pnn | < b = true
V1@ is functional
V1 G is total (using proof by contradiction, i.e. LEM)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

Curry Howard isomorphism:

A proof of db.pb is a pair.

A proof of Va.pa is a function.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

Curry Howard isomorphism:
A proof of db.pb is a pair. A proof of Va.pa is a function.
A proof of Va.db. Rab is a function returning a pair.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

Curry Howard isomorphism:
A proof of db.pb is a pair. A proof of Va.pa is a function.

A proof of Va.db. Rab is a function returning a pair.
VIVp : (3a. Ba) — P. (V(a : A)(b : Ba). p(a,b)) — V(s : Ja. Ba). ps
[1Vp:(da.Ba) — T. (V(a: A)(b: Ba). p(a,b)) — V(s : da. Ba). ps
Iy :(da.Ba) - A

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

Curry Howard isomorphism:

A proof of db.pb is a pair. A proof of Va.pa is a function.

A proof of Va.db. Rab is a function returning a pair.
VIVp : (3a. Ba) — P. (V(a : A)(b : Ba). p(a,b)) — V(s : Ja. Ba). ps
X Vp:(3a.Ba) — T. (V(a: A)b: Ba).p(a,b)) — V(s : Ja. Ba). ps
Iy :(da.Ba) - A

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

ACyp:=VR:A — B — P.(va.db. Rab) — if : A — B.Va. Ra(fa)

Curry Howard isomorphism:

A proof of db.pb is a pair. A proof of Va.pa is a function.

A proof of Va.db. Rab is a function returning a pair.
VIVp : (3a. Ba) — P. (V(a : A)(b : Ba). p(a,b)) — V(s : Ja. Ba). ps
X Vp:(3a.Ba) — T. (V(a: A)b: Ba).p(a,b)) — V(s : Ja. Ba). ps
Xr7q:(3a.Ba) - A

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC4g:=VR:A — B — P.(va.3b. Rab) — 3f : A — B.va. Ra(fa)

Theorem
The law of excluded middle and the axiom of countable choice
together are inconsistent with CT:

LEM A ACN,IB% — =CT

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Axiom-free synthetic computability I

The following are equivalent: C-ACyp:=VR:A - B — P.CR —
(Va.db.Rab) — df.Va. Ra(fa)

>9-ACn

jww Dominik Kirst and Gert Smolka [CPP '19]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Axiom-free synthetic computability I

The following are equivalent: C-ACyp:=VR:A - B — P.CR —
(Va.db.Rab) — df.Va. Ra(fa)

>9-ACn

* MP :=Vf : N — B. =—=(dn. fn = true) — (3n. fn = true)
cVX.Vp: X — P.Sp — Vx. =—px — pX
VXVp: X —P.S5p — Sp — VX. px V —px
VXVp: X —>P.Sp— Sp— Dp

jww Dominik Kirst and Gert Smolka [CPP '19]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Which axioms keep CIC computational?

LEM A ACN,]B — =CT

« Can one of the assumptions be dropped? (No)
« Can one of the assumptions be weakened? (Yes)
* How much?

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

LEM
A\ — =CT
ACN,IB%

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

LEM
N\ — —CT
VR:N — B — P. (Vn.d b. Rnb) — 3f.¥n. Rn(fn)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

LEM
N\ — —CT
VR :N — B — P. (Vn.3!b. Rnb) — 3f.¥n. Rn(fn)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

LEM
A\ — =CT
AU CN,B

AUC: Axiom of unique choice

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

VP :P. PV =P
A\ — =CT
AUCN,B

AUC: Axiom of unique choice

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

Vi:N—B. (3n.fn =true) Vv —(3n. fn = true)

A\ — =CT
AU CN,B

AUC: Axiom of unique choice

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

Vf: N — B. =—(3n. fn = true) vV —(3n. fn = true)

A\ — =CT
AU CN,B

AUC: Axiom of unique choice

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est) classical logical and choice principles

WLPO
A\ — =CT
AU CN,B

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est; classical Ioaical and choice ﬁrinciﬁles

WKL — —CT, WKL is Weak Kbnig’s Lemma, proof via Kleene trees

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est; classical Ioaical and choice ﬁrinciﬁles

WKL — —CT, WKL is Weak Kbnig’s Lemma, proof via Kleene trees
C-AC4p:=VR:A - B — P.CR — (Va.3b.Rab) — 3f.Va. Ra(fa)

>9-ACn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Weak(est; classical Ioaical and choice ﬁrinciﬁles

WKL — —CT, WKL is Weak Kbnig’s Lemma, proof via Kleene trees

C-AC4p:=VR:A— B — P.CR — (Va.3b.Rab) — 3f.va. Ra(fa)

>9-ACn

The following are equivalent:
1. WKL
2. LLPO A ﬂ?-ACN,B

3.VR:N — B — P. Ris ITY — (vn.-—=3b. Rnb) — 3f.¥n. Rn(fn)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Fext

\
DNE 43 LEM &~ 3 DGP — > WLEM ADC == AC

O A e WU SR

MP <—— LPO > WLPO —> LLPO ACC

N—>N N

T e |

Homeo(BY,NY) Homeo(NY,BY) WKL ACNN WC-N |

T -—————- FAN AUCyxgp / ;
\ WLPO .~ / / Fext
// / /
p / /
EPFg / ,/

/ e
/ //

EA < > EPF <— SCT <— CT%

Synthetic computability a la Richman
dcx is the value of the c-th u-recursive function with input x

CT := VFf:N— N.dc:N.Vx. ¢cx > fx

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability a la Richman

CT':= 3¢.vf : N — N. ¢ : N. Vx. ¢ox > fx

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability a la Richman, Bridges, and Bauer

CT':= 3¢.vf : N — N. ¢ : N. Vx. ¢ox > fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability a la Richman, Bridges, and Bauer

CT':=3¢.¥f: N — N. 3c : N. Vx. ¢cx > fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in

There is an s} operator for currying.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability a la Richman, Bridges, and Bauer

CT':=3¢.¥f: N — N. 3c : N. VX. ¢pox > fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in

The law of excluded middle is false: —~(VP : P. P v —P)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability a la Richman, Bridges, and Bauer

CT':=3¢.¥f : N — N. 3¢ : N. Vx. ¢cx > fx

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

Bridges and Richman [1987] remark

countable choice can be avoided by postulating an s} operator

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability without choice
Assume

1. a (partial) function ¢
2. universal for N — N: Vf : N — N.dc : N.Vx. ¢cx > fX,

3.afunctions: N —- N — N
4. with the property that ¢gc x)Y = ¢c(X,).

Equivalently, using parametrical universality

SCT:=3¢.Vf:N - N - NIy:N = NVi. ¢, = f;

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability without choice
Assume

1. a (partial) function ¢
2. universal for N — N: Vf : N — N.dc : N.Vx. ¢cx > fX,

3.afunctions: N —- N — N
4. with the property that ¢gc x)Y = ¢c(X,).

Equivalently, using parametrical universality
SCT:=4¢.Vf:N - N = N3y !N - NVi. ¢,j =1

or using parameterised partial functions N - N — N (EPF),

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability without choice
Assume

1. a (partial) function ¢
2. universal for N — N: Vf : N — N.dc : N.Vx. ¢cx > fX,

3.afunctions: N —- N — N
4. with the property that ¢gc x)Y = ¢c(X,).

Equivalently, using parametrical universality
SCT:=4¢.Vf:N - N = N3y !N - NVi. ¢,j =1

or using parameterised partial functions N - N — N (EPF),
or using parameterised boolean functions N —- N — B (SCTp),

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability without choice
Assume

1. a (partial) function ¢
2. universal for N — N: Vf : N — N.dc : N.Vx. ¢cx > fX,

3.afunctions: N —- N — N
4. with the property that ¢gc x)Y = ¢c(X,).

Equivalently, using parametrical universality
SCT:=4¢.Vf:N - N = N3y !N - NVi. ¢,j =1

or using parameterised partial functions N - N — N (EPF),
or using parameterised boolean functions N —- N — B (SCTp),
or using parametrically enumerable predicates N — N — P (EA).

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic computability without choice
Assume

1. a (partial) function ¢

2. universal for N — N: Vf : N — N.dc : N.VX. ¢cx > fx,
3.afunctions: N —- N —- N

4. with the property that ¢gc)y = ¢c(X,y).

due to strict separation of functions and logic in Cog
the law of excluded middle can be consistently assumed

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

1. Introduce favourite model of computation

1.1 Prove s]' theorem (currying)
1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA)
3. Develop computability theory relying on axiom

3.1 Undecidability of the halting problem

3.2 Rice’s theorem

3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)
3.4 Oracle computation and Turing reducibility
3.5 Kolmogorov complexity

3.6 Kleene-Post and Post’s theorem

4. Prove undecidability of concrete problems (PCP, CFGs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

1. Introduce favourite model of computation

1.1 Prove s]' theorem (currying)
1.2 Argue universal program

1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom (SCT, EPF, EA)
3. Develop computability theory relying on axiom

3.1 Undecidability of the halting problem

3.2 Rice’s theorem

3.3 Reduction theory (Myhill isomorphism theorem, Post’s simple and hypersimple sets)
3.4 Oracle computation and Turing reducibility
3.5 Kolmogorov complexity

3.6 Kleene-Post and Post’s theorem

N L N O N U N NN

4. Prove undecidability of concrete problems (PCP, CFGs, needs CT)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)
* but not provable (important for analysing minimal requirements)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)
* but not provable (important for analysing minimal requirements)

« Axioms of choice, countable choice, and countable ﬂ?—choice are

* consistent (nice to know)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)
* but not provable (important for analysing minimal requirements)

« Axioms of choice, countable choice, and countable ﬂ?—choice are

* consistent (nice to know)
* but not provable (otherwise LEM A CT would be inconsistent)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)
* but not provable (important for analysing minimal requirements)

« Axioms of choice, countable choice, and countable ﬂ?—choice are

* consistent (nice to know)
* but not provable (otherwise LEM A CT would be inconsistent)

« Axiom of countable X ?-choice is provable

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Principles in CIC

 Law of excluded middle LEM and Markov’s Principle MP are

* consistent (important to formalise textbook proofs)
* but not provable (important for analysing minimal requirements)

« Axioms of choice, countable choice, and countable ﬂ?—choice are

* consistent (nice to know)
* but not provable (otherwise LEM A CT would be inconsistent)

« Axiom of countable X ?-choice is provable
= enables constructive reverse mathematics for computability
- not too strong (no 179-choice, LEM, MP)

e just strong enough (countable }__?-choice)
* This is not the case in (all?) other type theories

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Other type theories

» Martin-Lof Type Theory (e.g. Agda) with dx.px := X x.px:
Proves AC, so LLPO — —CT.

» Martin-L6f Type Theory (e.g. Agda) with dx.px := ==X x.px:
Does not prove AC, but IT9-ACy g — —CT

* Homotopy Type Theory with dx.px := || X x.px]||:
Proves AUC, so WLPO — —CT.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians

in much the same way as excluded middle is for classical mathem-
aticians.”

Richman [2000, 2001]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians

in much the same way as excluded middle is for classical mathem-
aticians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics

sensitive to applications of countable choice.”

Richman [2000, 2001]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Three Flavours

02.06.2022

 No axioms

 Morally identify computable functions with functions

« Can prove results not relying on a universal machine
* With CT as axiom

* Needs a model of computation
« Allows proving undecidability of concrete problems
* Allows talking e.g. about the arithmetical hierarchy

* With SCT as axiom

* No need for model of computation

Yannick Forster: Synthetic Computability in Constructive Type Theory

Conjecture

The following are consistent in CIC:
* CT (implies in particular SCT)
* LEM (implies in particular MP)
* functional extensionality

» Uniformisation: “Every total relation contains a total functional
subrelation.”

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Results

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Rice’s theorem

EPF := 3¢.Vf : N — N -» N.3v. Vix. ¢,ix>fix
EA:=dp.Vp: N —- N — P.
(3f.Vi. f; enumerates p;) — 3v.Vi. p.; enumerates p;

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Rice’s theorem

EPF := d4¢.Vf : N — N - N.3v. Vix. ¢,;x>fix
EA=Jp.Vp: N —- N — P.
(3f.Vi. f; enumerates p;) — 3v.Vi. p.; enumerates p;

Given EPF every p : (N — N) — P js undecidable if it
1. is extensional: Vff' : N — N.(Vx. fx = f'x) — pf < pf’
2. is non-trivial: 3fyfs. pfy A —pfo

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Rice’s theorem

EPF := d4¢.Vf : N — N - N.3v. Vix. ¢,;x>fix
EA=Jp.Vp: N —- N — P.
(3f.Vi. f; enumerates p;) — 3v.Vi. p.; enumerates p;

Given EA every p : (N — P) — IP js undecidable if it
1. is extensional: Vqq' : N — P.(Vx. gx < g'x) — pg < pq’
2. is non-trivial: 3g1q9» both enumerable. pqq N\ —pfs

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

EPF := 3¢.Vf : N — N -» N.3v. Vix. ¢ix>fix

Lemma
Let ¢ be given as in EPF and v : N — N, then there exists ¢ S.t. ¢yc = ¢e.

Theorem

Let ¢ be given as in EPF and p : N — P. If p treats elements as codes w.r.t. ¢
and is non-trivial, then p is undecidable.

Proof.

Let f decide p and let pcy and —pc,. Define hyy :=if fx then ¢c,y else ¢c.y
and let y via EPF be s.t. ¢,x = hx. Let ¢ be a fixed-point for -y.

Case analysis on fc:

- If fc = true we have pc and ¢¢c = ¢yc = he = ¢¢,. Thus pco, contradiction.
- If fc = false we have —pc and ¢¢c = ¢yc = he = ¢¢,. Thus —pcy, contradiction.
L]

Simple predicates
Definition (analytic)
A predicate p : N — P is called simple if
* it is enumerable,
* its complement is infinite,

* its complement has no enumerable infinite subpredicate.

jww Felix Jahn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Simple predicates
Definition (analytic)
A predicate p : N — P is called simple if
* it is enumerable,

* its complement is infinite,
* its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N — P is infinite if there exists an injection of type

N — N returning only elements in p.

jww Felix Jahn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Simple predicates
Definition (analytic)
A predicate p : N — P is called simple if
* it is enumerable,
* its complement is infinite,

* its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N — P is infinite if there exists an injection of type
N — N returning only elements in p.

Theorem
Every infinite predicate has an enumerable infinite subpredicate.

jww Felix Jahn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Simple predicates
Definition (analytic)
A predicate p : N — P is called simple if
* it is enumerable,
* its complement is infinite,

* its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N — P is infinite if Yn.3x > n. px.

Theorem (Meta)

Every definable predicate which can be proved infinite can be
proved to have an enumerable subpredicate.

jww Felix Jahn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Simple predicates
Definition (analytic)
A predicate p : N — P is called simple if
* it is enumerable,
* its complement is infinite,
* its complement has no enumerable infinite subpredicate.

Definition
A predicate p : N — P is infinite if there is no list covering p.

jww Felix Jahn

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Kolmogorov complexity

We call a partial function D : N — N a description mode. We call y a
description of x if Dy > x. |n| is the length of the bit string representing a
number n.

vix. D'y'>x = 3y. Dy x Ayl < ly'| +d.

Cxs:=sisus.dy.s=|y| \Dy >x
N(x):=Cx < x

Lemma

Vx.——3s. Cxs

N is simple

jww Nils Lauermann and Fabian Kunze [ITP "22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Turing reducibility

Analytic: A u-recursive functional takes as input an oracle and a number and may
compute a number. Theorem by Kleene and Dauvis:

Fla)x>,y — dLLN.(Vx e L. dy. ax > y) AVB. (Vx € L. ax = BX) — F(B)X >, Yy

jww Dominik Kirst [TYPES '22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Turing reducibility

Fla)x>,y — dLLN.(Vx e L. dy. ax > y) AVB. (Vx € L. ax = Bx) — F(B)X >, Y

Synthetically, a Turing functional F:(Y~~B) — (X ~ B) ...

1....is continuous if: VR:Y ~~B.Vx:X.Vb:B. FRxb — dL : LY. (Vy € L.3b. Ryb) A
VR":Y ~~B. (Vy € L.¥Yb. Ryb — R'yb) — FR'xb

2. ...factors through a computational core F':(Y —B)—(X—B) if:

Vi:Y—B.VR:Y~~B. f computes R — F'f computes FR

where f:Z1—2Z> computes a functional relation R:Zy~~Z5 if Vxy. Rxy « x> y.

A synthetic Turing reduction from p to g: Y —P maps the characteristic relation of g

to the one of p.
jww Dominik Kirst [TYPES '22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

The arithmetical hierarchy

All first-order logic formulas is equivalent to a formula in prenex nor-
mal form if and only if LEM holds.

We can define a predicate p : N — P to be
« 2o and [Ty if it is expressible as quantor-free arithmetical formula.

3 .1 if there is a quantor-free arithmetical formula q with
VX. pX < Y1VY2 ... V¥Yn. Q(X, Y1, Y2s - - 5 Yn)

» [T, 1 if there is a quantor-free arithmetical formula q with
VX. px < Vy13ys...Vyn....q(X, Y1, Y2, ..., ¥n)

jww Niklas Mick and Dominik Kirst [TYPES '22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

The arithmetical hierarchy

All first-order logic formulas is equivalent to a formula in prenex nor-
mal form if and only if LEM holds.

We can define a predicate p : N — P to be

« 2o and [Ty if it is expressible as quantor-free arithmetical formula.

3 .1 if there is a quantor-free arithmetical formula q with
VX. pX < Y1VY2 ... V¥Yn. Q(X, Y1, Y2s - - 5 Yn)

» [T, 1 if there is a quantor-free arithmetical formula q with
VX. px < Vy13ys...Vyn....q(X, Y1, Y2, ..., ¥n)

Or replace quantor-free by decidable.

Both definitions are equivalent under CT.
jww Niklas Mick and Dominik Kirst [TYPES '22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Ever seen this principle?

Markov’s Principle

MP := Vf:N—B. ——(dn. fn = true) < (dn. fn = true)

Anonymised Markov’s Principle

AMP = Vf:N—B.dg9:N—B. =—(dn. fn = true) «+ (3n. gn = true)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Ever seen this principle?

Markov’s Principle

MP := Vf:N—B. ——(dn. fn = true) < (dn. fn = true)

Anonymised Markov’s Principle
AMP = Vf:N—B.dg9:N—B. =—(dn. fn = true) «+ (3n. gn = true)
Principle of Finite Possibility

PFP = Vf:N—=B.99:N—=B. —(3n. fn = true) < (3n. gn = true)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Post’s theorem
Let r, enumerate all continuous functions F’:(Y —B)—(X—B).

Lemma

There is a Turing functional with core F'.

A" :=n.3R.(Vf.Rf =rnf) NRAntrue
A is semi-decidable relative to B if there is a Turing functional F with

vn.An < F B ntrue.

Theorem (Post)
Assuming LEM:

- A unary predicate A is X, 1 iff it is semi-deciable relative to 9\".

IfAis Xp, then A <7 0",
jww with Niklas Mtck and Dominik Kirst [TYPES °22]

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Completeness of first-order logic

Let 7 E ¢ be Tarski-style validity of a formula ¢ under theory 7 in all models
M satistying Peirce’s law, where n-ary functions are interpreted as functions
D" — D and predicates as predicates D" — P.

a-completeness for a : (form — P) — P

VT :form — P. a(T) — Ve : form. T E o — (3I :listform. T C T AT F)

* Arbitrary completeness is equivalent to LEM

« D-completeness is equivalent to MP

« £-completeness is equivalent to MP

» finite-completeness is equivalent to Vf : N — B. computable f — . ..

jww Dominik Kirst and Dominik Wehr [LFCS 20, LOGCOM

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Completeness of first-order logic

If we interpret predicates as boolean functions D" — B we have that

* Arbitrary completeness is equivalent to LEM and Weak Konig’'s Lemma for
arbitrary trees

« D-completeness follows from LEM and Weak Konig's Lemma for arbitrary
trees

« £-completeness is equivalent to ?7??
- finite-completeness is equivalent to ???

jww Dominik Kirst, Hugo Herbelin

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Completeness of first-order logic

If we interpret predicates as boolean functions D" — B we have that

* Arbitrary completeness is equivalent to LEM and Weak Konig’'s Lemma for
arbitrary trees

« D-completeness follows from LEM and Weak Konig's Lemma for arbitrary
trees Does MP suffice? Equivalence?

« £-completeness is equivalent to ?7??
- finite-completeness is equivalent to ???

jww Dominik Kirst, Hugo Herbelin

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Completeness of first-order logic

If we interpret predicates as boolean functions D" — B we have that

* Arbitrary completeness is equivalent to LEM and Weak Konig’'s Lemma for
arbitrary trees

« D-completeness follows from LEM and Weak Konig's Lemma for arbitrary
trees Does MP suffice? Equivalence?

« £-completeness is equivalent to ?7??
- finite-completeness is equivalent to ??? WKL for computable trees is false.

jww Dominik Kirst, Hugo Herbelin

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

The Coq Library of Undecidability Proofs

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic undecidability

Analytic definition

Up = —-df. u-recursive f A ...

Lemma (Analytic)

There is no u-recursive enumerator for the complement of the
halting problem.

Theorem (Analytic)

Given a u-recursive decider for p, there is a u-recursive
enumerator for the complement of the halting problem:

Dp — S(HaItTM)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic undecidability

Analytic definition

Up = —-df. u-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the
halting problem, assuming CT.

Theorem (Synthetic)

Given a decider for p, there is an
enumerator for the complement of the halting problem:

Dp — S(HaItTM)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic undecidability

Analytic definition

Up = —-df. u-recursive f A ...

Lemma (Synthetic)

There is no enumerator for the complement of the
halting problem, assuming CT.

Theorem (Synthetic)

Given a decider for p, there is an
enumerator for the complement of the halting problem:

Dp — E(HaItTM)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Synthetic undecidability
Analytic definition

Up := ~df. u-recursive f A ...

Lemma (Synthetic)
There is no enumerator for the complement of the

halting problem, assuming CT.

Synthetic definition

Up :=Dp — E(HaItTM)

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

The Coq library of undecidability proofs

Ha|t|_

HaltCM

Vv

HaltrracTRAN

H10

l

Halt‘u

with Dominique Larchey-Wendling, Gert Smolka, Fabian Kunze, Max Wuttke . ..

The Coq library of undecidability proofs

Halt, < FOL
Haltty; — Haltsgryy — SRH ——— SR —— MPCP —> PCP BPCP

~- l \L ~
HaltBSM TSR PCSnf . CFPP
Vv ~
HaltCM CFP
~N hd
HaltFRACTRAN _> EDIOC CFl
H10 —— H10, H10C
Halt, SHOU
HOU

with ... Edith Heiter, Dominik Kirst, Simon Spies, Dominik Wehr

The Coq library of und

ecidability proofs

Haltl_ <

)

Vv

HaltBSM

W

HaltCM

Vi

HaltpracTRAN —

l

Halt“

Unifz

A

H10 —— H10,

——‘—‘“—h“‘“h‘Eﬁh‘hﬁhﬁhﬁﬁh‘hﬁ%hhﬁfiis BPCP —

HaltTM _> HaltSBTM _> SRH —> SR —> MPCP _> PCP

l l

TSR SSRo; J
A /{
HaltMM2 _> HaltCM2 SySFTyp

SySFTC

SemiU

EDIOC Haltcy, — SSemil

\Hloc — SysFi hab
1 1

SHOU H10UC IPC,
HOU Unif, FMsetC

T

IMSEL

=

~

CFPP

CFP

~

CFl

EILL

|

CLL <— ILL

FO

~

Arith
(DZF

FSAT

|

SLSAT

MSLSAT

The Coq library of undecidability proofs

Halt, < FO

Haltty; — Haltsgryy — SRH ——— SR —— MPCP —> PCP BPCP —

~- l \L ~V WV
HaltBSM TSR SSROI PCSnf SySFTC CFPP Arlth
A
~ / ~
HaltCM HaltMM2 _> HaltCM2 SySFTyp SemiU CFP (I)ZF
A ==
22 v v
HaltFRACTRAN _> EDIOC HaltCMl _> SSemlU CFl FSAT

HlO 4> H].OZ H].OC _> SySFinhab IMSEL E“_I_ SLSAT
Ha|t‘u SHOU H10UC IPC, CLL <— ILL MSLSAT
Unif, HOU Unifg FMsetC

T J

117k lines of code, 12 contributers, larger than the mathcomp core library

Models of computation

 Equivalence proofs for computability of relations NC SN P
* |[dentification of the weak call-by-value X-calculus as sweet spot

« extraction framework doing automatic computability proofs

* can be used to prove many-one equivalence between problems

 can be used to prove that SCT is a consequence of CT

« even works as a foundation for complexity theory, see Fabian Kunze’s work

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Conclusion

» Machine-checked textbook proofs are feasible using synthetic
approach, proofs can focus on mathematical essence.

» CIC allows these proofs to be classical and is an ideal ground for
constructive reverse mathematics without choice.

* Lots of open questions regarding constructive status for even
basic results.

« Machine-checked undecidability proofs from cutting-edge
research are feasible, proofs can focus on inductive invariants.

* Avoid working in models of computation explicitly in a proof
assistant, unless it is the weak call-by-value X-calculus.

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

Conclusion

» Machine-checked textbook proofs are feasible using synthetic
approach, proofs can focus on mathematical essence.

» CIC allows these proofs to be classical and is an ideal ground for
constructive reverse mathematics without choice.

* Lots of open questions regarding constructive status for even
basic results.

« Machine-checked undecidability proofs from cutting-edge
research are feasible, proofs can focus on inductive invariants.

* Avoid working in models of computation explicitly in a proof
assistant, unless it is the weak call-by-value X-calculus.

Thank you!

02.06.2022 | Yannick Forster: Synthetic Computability in Constructive Type Theory

	Computability Theory
	Machine-checked textbook proofs
	Results
	The Coq Library of Undecidability Proofs

