
Synthetic Computability in
Constructive Type Theory

Yannick Forster
Inria, Gallinette Team, Nantes

MFPS ’23

received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska‐Curie grant agreement No. 101024493.

Work done over the last 8ish years

Parts of the work presented are joint with Dominik Kirst, Gert Smolka,
Felix Jahn, and Niklas Mück.

The Coq Undecidability Library has contributions by Dominique
Larchey‐Wendling, Andrej Dudenhefner, Edith Heiter, Marc Her‐
mes, Johannes Hostert, Dominik Kirst, Mark Koch, Fabian Kunze,
Gert Smolka, Simon Spies, Dominik Wehr, Maximilian Wuttke, Nils
Lauermann, and Fabian Kunze, Benjamin Peters.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 2

Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3

Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3

Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3

Computability Theory

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3

Recipe to write textbooks on computability
1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿

3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿

?

3.4 Oracle computation and Turing reducibility

?

4. Prove undecidability of concrete problems ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Recipe to write textbooks on computability
1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿

3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem relying on Church Turing thesis

3

3.2 Rice’s theorem relying on Church Turing thesis

3

3.3 Reduction theory relying on Church Turing thesis

?

3.4 Oracle computation relying on Church Turing thesis

?

4. Prove undecidability ﴾PCP, CFGs﴿ relying on Church Turing thesis

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿

3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿

3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program 3

1.3 Optional: Introduce a second model and argue equivalence 3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program 3

1.3 Optional: Introduce a second model and argue equivalence 3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program 3

1.3 Optional: Introduce a second model and argue equivalence 3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem 3

3.2 Rice’s theorem

3

3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program 3

1.3 Optional: Introduce a second model and argue equivalence 3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem 3

3.2 Rice’s theorem 3
3.3 Reduction theory

?

3.4 Oracle computation

?

4. Prove undecidability ﴾PCP, CFGs﴿

?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Computability proofs machine‐checked in proof assistants
1. Introduce favourite model of computation 3
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿ 3

1.2 Argue universal program 3

1.3 Optional: Introduce a second model and argue equivalence 3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem 3

3.2 Rice’s theorem 3
3.3 Reduction theory ?
3.4 Oracle computation ?

4. Prove undecidability ﴾PCP, CFGs﴿ ?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 4

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.
2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.

1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.
2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.

1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿
1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.

2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.
2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.

2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.
2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Machine‐checked textbook proofs

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 6

Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 8

Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 8

Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 8

Constructive mathematics to the rescue

Church‐Turing thesis:
“Every effectively calculable function is 𝜇‐recursive.”

as an axiom in constructive mathematics

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. the 𝑐‐th 𝜇‐recursive function computes 𝑓

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 9

Kreisel [1965]

Constructive mathematics to the rescue

Church‐Turing thesis:
“Every effectively calculable function is 𝜇‐recursive.”

as an axiom in constructive mathematics

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. the 𝑐‐th 𝜇‐recursive function computes 𝑓

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 9

Kreisel [1965]

Overview

1. Axiom‐free “synthetic” computability
2. The axiom CT and its status in Coq
3. Fully Synthetic Computability á la Richman and Bauer
4. Synthetic Computability without choice
5. Synthetic Oracle Computability
6. More results
7. The Coq Library of Undecidability Proofs

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 10

Definitions

Decidability
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

Semi‐decidability
∃𝑓 ∶ ℕ ⇀ ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

Many‐one reducibility
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

Enumerability, one‐one reducibility, truth‐table reducibility, …

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 11

Definitions

Decidability
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

Semi‐decidability
∃𝑓 ∶ ℕ ⇀ ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

Many‐one reducibility
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

Enumerability, one‐one reducibility, truth‐table reducibility, …

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 11

Definitions

Decidability
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

Semi‐decidability
∃𝑓 ∶ ℕ ⇀ ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

Many‐one reducibility
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

Enumerability, one‐one reducibility, truth‐table reducibility, …

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 11

Definitions

Decidability
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

Semi‐decidability
∃𝑓 ∶ ℕ ⇀ ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

Many‐one reducibility
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

Enumerability, one‐one reducibility, truth‐table reducibility, …

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 11

Myhill isomorphism theorem

Theorem
Let 𝑋 and 𝑌 be enumerable discrete types, 𝑝 ∶ 𝑋 → ℙ, and 𝑞 ∶ 𝑌 → ℙ. If 𝑝 ⪯1 𝑞
and 𝑞 ⪯1 𝑝, then there exist 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 such that for all 𝑥 ∶ 𝑋
and 𝑦 ∶ 𝑌 :

𝑝𝑥 ↔ 𝑞(𝑓𝑥), 𝑞𝑦 ↔ 𝑝(𝑔𝑦), 𝑔(𝑓𝑥) = 𝑥, 𝑓(𝑔𝑦) = 𝑦

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 12

jww Felix Jahn and Gert Smolka [CPP ’23]

CT is inconsistent in classical systems…

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

…because the characteristic function of the self‐halting problem
is not general recursive.

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then 1 else 0

Formally in ZF:
𝑓 ∶= {(𝑛, 1) ∣ 𝜑𝑛𝑛 ↓} ∪ {(𝑛, 0) ∣ 𝜑𝑛𝑛 ↑}

Now 𝑓 is a total functional relation because 𝑓 is …
□3 functional
total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]

CT is inconsistent in classical systems…

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

…because the characteristic function of the self‐halting problem
is not general recursive.

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then 1 else 0

Formally in ZF:
𝑓 ∶= {(𝑛, 1) ∣ 𝜑𝑛𝑛 ↓} ∪ {(𝑛, 0) ∣ 𝜑𝑛𝑛 ↑}

Now 𝑓 is a total functional relation because 𝑓 is …
□3 functional
□ total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]

CT is inconsistent in classical systems…

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

…because the characteristic function of the self‐halting problem
is not general recursive.

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then 1 else 0

Formally in ZF:
𝑓 ∶= {(𝑛, 1) ∣ 𝜑𝑛𝑛 ↓} ∪ {(𝑛, 0) ∣ 𝜑𝑛𝑛 ↑}

Now 𝑓 is a total functional relation because 𝑓 is …
□3 functional
□3 total ﴾proof by contradiction, i.e. LEM﴿

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]

CT is inconsistent in classical systems…

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

…because the characteristic function of the self‐halting problem
is not general recursive.

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then 1 else 0

Formally in ZF:
𝑓 ∶= {(𝑛, 1) ∣ 𝜑𝑛𝑛 ↓} ∪ {(𝑛, 0) ∣ 𝜑𝑛𝑛 ↑}

Now 𝑓 is a total set‐theoretic function because 𝑓 is …
□3 functional
□3 total ﴾proof by contradiction, i.e. LEM﴿

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 13

Troelstra and van Dalen [1988]

CT is consistent in constructive systems

CT ∶= ∀𝑓 ∶ ℕ → ℕ.𝑓 is general recursive

• Heyting arithmetic, Kleene [1945]
• Bishop’s constructive mathematics / Martin‐Löf Type Theory
• HoTT ﴾MLTT + propositional truncation + univalence﴿,
Swan and Uemura [2019]

• MLTT, Yamada [2020]

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 14

Slogans of ﴾Coq’s﴿ Type Theory
Types and functions are native
• Inductive types ℕ, 𝔹, 𝐴 × 𝐵 and so on
• The function type 𝐴 → 𝐵 consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively
• Propositions are types
• Proofs are programs
• ﴾Total, functional﴿ relations are functions 𝐴 → 𝐵 → ℙ
• Classical principles are independent:

DNE ∶= ∀𝑃 ∶ ℙ. ¬¬𝑃 → 𝑃 LEM ∶= ∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 15

Slogans of ﴾Coq’s﴿ Type Theory CIC
Types and functions are native
• Inductive types ℕ, 𝔹, 𝐴 × 𝐵 and so on
• The function type 𝐴 → 𝐵 consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively
• Propositions are types in a separate, impredicative universe ℙ
• Proofs are programs, no large eliminations from ℙ to 𝕋
• ﴾Total, functional﴿ relations are functions 𝐴 → 𝐵 → ℙ
• Classical principles are independent:

DNE ∶= ∀𝑃 ∶ ℙ. ¬¬𝑃 → 𝑃 LEM ∶= ∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 15

CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true
□3𝐺 is functional

𝐺 is total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 16

CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true
□3𝐺 is functional

𝐺 is total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 16

CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true

□3𝐺 is functional
𝐺 is total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 16

CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true
□3𝐺 is functional
□ 𝐺 is total

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 16

CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true
□3𝐺 is functional
□3𝐺 is total ﴾using proof by contradiction, i.e. LEM﴿

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 16

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□X ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□X ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□X 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Theorem
The law of excluded middle and the axiom of countable choice
together are inconsistent with CT:

LEM ∧ ACℕ,𝔹 → ¬CT

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 17

Which axioms keep CIC computational?

LEM ∧ ACℕ,𝔹 → ¬CT

• Can one of the assumptions be dropped? ﴾No﴿
• Can one of the assumptions be weakened? ﴾Yes﴿
• How much?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 18

Weak﴾est﴿ classical logical and choice principles

Theorem

LEM
∧ → ¬CT

ACℕ,𝔹

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

LEM
∧ → ¬CT

∀𝑅 ∶ ℕ → 𝔹 → ℙ. (∀𝑛.∃ 𝑏. 𝑅𝑛𝑏) → ∃𝑓.∀𝑛. 𝑅𝑛(𝑓𝑛)

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

LEM
∧ → ¬CT

∀𝑅 ∶ ℕ → 𝔹 → ℙ. (∀𝑛.∃!𝑏. 𝑅𝑛𝑏) → ∃𝑓.∀𝑛. 𝑅𝑛(𝑓𝑛)

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

LEM
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑓 ∶ ℕ → 𝔹. (∃𝑛. 𝑓𝑛 = true) ∨ ¬(∃𝑛. 𝑓𝑛 = true)
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑓 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ∨ ¬(∃𝑛. 𝑓𝑛 = true)
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Weak﴾est﴿ classical logical and choice principles

Theorem

WLPO
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 19

Synthetic computability á la Richman
𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT

′

∶=

∃𝜙.

∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability á la Richman

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
There is an 𝑠𝑚

𝑛 operator for currying.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
The law of excluded middle is false: ¬(∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

Bridges and Richman [1987] remark

countable choice can be avoided by postulating an 𝑠𝑚
𝑛 operator

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21

Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.
Equivalently, using parametrical universality

SCT ∶= ∃𝜙. ∀𝑓 ∶ ℕ → ℕ → ℕ.∃𝛾 ∶ ℕ → ℕ.∀𝑖. 𝜙𝛾𝑖 ≡ 𝑓𝑖

or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,
or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,
or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 22

Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.
Equivalently, using parametrical universality

SCT ∶= ∃𝜙. ∀𝑓 ∶ ℕ → ℕ → ℕ.∃𝛾 ∶ ℕ → ℕ.∀𝑖. 𝜙𝛾𝑖 ≡ 𝑓𝑖

or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,

or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,
or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 22

Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.
Equivalently, using parametrical universality

SCT ∶= ∃𝜙. ∀𝑓 ∶ ℕ → ℕ → ℕ.∃𝛾 ∶ ℕ → ℕ.∀𝑖. 𝜙𝛾𝑖 ≡ 𝑓𝑖

or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,
or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,

or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 22

Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.
Equivalently, using parametrical universality

SCT ∶= ∃𝜙. ∀𝑓 ∶ ℕ → ℕ → ℕ.∃𝛾 ∶ ℕ → ℕ.∀𝑖. 𝜙𝛾𝑖 ≡ 𝑓𝑖

or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,
or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,
or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 22

Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.

due to strict separation of functions and logic in Coq
the law of excluded middle can be consistently assumed

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 22

1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom ﴾SCT, EPF, EA﴿

3

3. Develop computability theory relying on axiom

3

3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿

3

3.4 Oracle computation and Turing reducibility

3

3.5 Kolmogorov complexity

3

3.6 Kleene‐Post and Post’s theorem

3

4. Prove undecidability of concrete problems ﴾PCP, CFGs﴿

3

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 23

1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom ﴾SCT, EPF, EA﴿ 3

3. Develop computability theory relying on axiom 3

3.1 Undecidability of the halting problem 3

3.2 Rice’s theorem 3
3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿ 3

3.4 Oracle computation and Turing reducibility 3

3.5 Kolmogorov complexity 3

3.6 Kleene‐Post and Post’s theorem 3

4. Prove undecidability of concrete problems ﴾PCP, CFGs, needs CT﴿ 3

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 23

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿

• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿
• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿
• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿
• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿
• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿
• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 24

Other type theories

• Martin‐Löf Type Theory ﴾e.g. Agda﴿ with ∃𝑥.𝑝𝑥 ∶= 𝛴𝑥.𝑝𝑥:
Proves AC, so LLPO → ¬CT.

• Martin‐Löf Type Theory ﴾e.g. Agda﴿ with ∃𝑥.𝑝𝑥 ∶= ¬¬𝛴𝑥.𝑝𝑥:
Does not prove AC, but 𝛱0

1‐ACℕ,𝔹 → ¬CT
• Homotopy Type Theory with ∃𝑥.𝑝𝑥 ∶= ||𝛴𝑥.𝑝𝑥||:
Proves AUC, so WLPO → ¬CT.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 25

Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians in
much the same way as excluded middle is for classical mathematicians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics
sensitive to applications of countable choice.”

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 26

Richman [2000, 2001]

Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians in
much the same way as excluded middle is for classical mathematicians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics
sensitive to applications of countable choice.”

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 26

Richman [2000, 2001]

Three Flavours

• No axioms
• Morally identify computable functions with functions
• Can prove results not relying on a universal machine

• With CT as axiom
• Needs a model of computation
• Allows proving undecidability of concrete problems
• Allows talking e.g. about the arithmetical hierarchy

• With SCT as axiom
• No need for model of computation

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 27

Conjecture

The following are consistent in CIC:

• CT ﴾implies in particular SCT﴿
• LEM ﴾implies in particular MP﴿
• functional extensionality
• Uniformisation: “Every total relation contains a total functional
subrelation.”

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 28

Synthetic Oracle Computability

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 28

Oracle computability
We call 𝐹 ∶ (𝑄 → 𝐴 → ℙ) → (𝐼 → 𝑂 → ℙ) an ﴾oracle‐﴿computable
functional if there is a computation tree 𝜏 ∶ 𝐼 → 𝕃𝐴 ⇀ 𝑄 + 𝑂 such
that

∀𝑅𝑖𝑜. 𝐹𝑅𝑖𝑜 ↔ ∃𝑞𝑠 𝑎𝑠. 𝜏𝑖 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 ∧ 𝜏 𝑖 𝑎𝑠 ▷ out 𝑜

where the interrogation relation 𝜎; 𝑅 ⊢ 𝑞𝑠; 𝑎𝑠 is inductively defined:

𝜎 ; 𝑅 ⊢ [] ; []
𝜎 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 𝜎𝑎𝑠 ▷ ask 𝑞 𝑅𝑞𝑎

𝜎 ; 𝑅 ⊢ 𝑞𝑠 ++ [𝑞] ; 𝑎𝑠 ++ [𝑎]

where we use the shorthands ask 𝑞 and out 𝑜 for the respective
injections into the sum type 𝑄 + 𝑂 for better intuition.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 29

Turing reducibility

̂𝑝 ∶= 𝜆𝑥𝑏. {𝑝𝑥 if 𝑏 = true
¬𝑝𝑥 if 𝑏 = false,

A predicate 𝑝 ∶ 𝑋 → ℙ Turing reduces to 𝑞 ∶ 𝑌 → ℙ if:

𝑝 ⪯T 𝑞 ∶= ∃𝐹 . 𝐹 is computable ∧ ∀𝑥𝑏. ̂𝑝𝑥𝑏 ↔ 𝐹 ̂𝑞𝑥𝑏

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 30

Semi‐decidability
𝑝 ∶ 𝑋 → ℙ is semi‐decidable relative to 𝑞 ∶ 𝑌 → ℙ if there is a com‐
putable

𝐹 ∶ (𝑌 → 𝔹 → ℙ) → 𝑋 → 1 → ℙ
with

∀𝑥. 𝑝𝑥 ↔ 𝐹 ̂𝑞 𝑥 ⋆ .

Theorem ﴾PT﴿
We have 𝑝 ⪯T 𝑞 if
• 𝑞 is classical (∀𝑦. 𝑞𝑦 ∨ ¬𝑞𝑦),
• 𝑝 is semi‐decidable in 𝑞
• the complement of 𝑝 is semi‐decidable in 𝑞

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 31

The arithmetical hierarchy
All first‐order logic formulas is equivalent to a formula in prenex
normal form if and only if LEM holds.
We can define a predicate 𝑝 ∶ ℕ → ℙ to be

• 𝛴0 and 𝛱0 if it is expressible as quantor‐free arithmetical formula.
• 𝛴𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∃ ⃗𝑦1∀ ⃗𝑦2 … ∇ ⃗𝑦𝑛. 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)
• 𝛱𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∀ ⃗𝑦1∃ ⃗𝑦2 … ∇ ⃗𝑦𝑛 … . 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)

Or replace quantor‐free by decidable.
Theorem
Both definitions are equivalent under CT.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 32

jww Niklas Mück and Dominik Kirst [TYPES ’22]

The arithmetical hierarchy
All first‐order logic formulas is equivalent to a formula in prenex
normal form if and only if LEM holds.
We can define a predicate 𝑝 ∶ ℕ → ℙ to be

• 𝛴0 and 𝛱0 if it is expressible as quantor‐free arithmetical formula.
• 𝛴𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∃ ⃗𝑦1∀ ⃗𝑦2 … ∇ ⃗𝑦𝑛. 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)
• 𝛱𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∀ ⃗𝑦1∃ ⃗𝑦2 … ∇ ⃗𝑦𝑛 … . 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)
Or replace quantor‐free by decidable.
Theorem
Both definitions are equivalent under CT.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 32

jww Niklas Mück and Dominik Kirst [TYPES ’22]

Ever seen this principle?

Markov’s Principle

MP ∶= ∀𝑓 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑓𝑛 = true)

Anonymised Markov’s Principle

AMP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)

Principle of Finite Possibility

PFP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 33

Ever seen this principle?

Markov’s Principle

MP ∶= ∀𝑓 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑓𝑛 = true)

Anonymised Markov’s Principle

AMP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)

Principle of Finite Possibility

PFP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 33

Axioms for Oracle computability
Given a universal 𝜃 ∶ ℕ → (ℕ ⇀ ℕ), construct universal

𝜉 ∶ ℕ → (ℕ → 𝕃𝔹 → ℕ + 1)
enumerating any possible tree.
Given a tree 𝜎 ∶ ℕ → 𝕃𝔹 → ℕ + 1 define

�̂�𝑅𝑥 ∶= ∃𝑞𝑠 𝑎𝑠. 𝜎 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 ∧ 𝜎 𝑎𝑠 ▷ out ⋆
𝛯𝑐𝑅𝑥 ∶= 𝜉𝑐𝑅𝑥

We define the Turing jump 𝑞′ of a predicate 𝑞 ∶ ℕ → ℙ as

𝑞′𝑐 ∶= 𝛯𝑐 ̂𝑞 𝑐

Theorem
𝑞′ is semi‐decidable in 𝑞, but its complement is not.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 34

Classical logic in the arithmetical hierarchy
𝛴𝑛‐LEM ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛴𝑛𝑝 → ∀𝑣.𝑝𝑣 ∨ ¬𝑝𝑣 𝛴𝑛‐DNE ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛴𝑛𝑝 → ∀𝑣.¬¬𝑝𝑣 → 𝑝𝑣

𝛱𝑛‐LEM ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛱𝑛𝑝 → ∀𝑣.𝑝𝑣 ∨ ¬𝑝𝑣 𝛱𝑛‐DNE ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛱𝑛𝑝 → ∀𝑣.¬¬𝑝𝑣 → 𝑝𝑣
𝛴𝑛‐LEM

𝛱𝑛‐LEM 𝛴𝑛‐DNE

𝛱𝑛‐DNE

𝛴𝑛−1‐DNE

Y. Akama, S. Berardi, S. Hayashi, and U. Kohlenbach, An arithmetical hierarchy of the law of excluded
middle and related principles ﴾2004﴿

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 35

Post’s theorem

Theorem ﴾Post﴿
Assuming 𝛴0

𝑛‐LEM:
• A unary predicate 𝐴 is 𝛴𝑛+1 iff it is semi‐decidable relative to ∅(𝑛).
• If 𝐴 is 𝛴𝑛, then 𝐴 ⪯𝑇 ∅(𝑛).

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 36

jww with Niklas Mück and Dominik Kirst [TYPES ’22]

Results

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 36

Rice’s theorem

EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥
EA ∶= ∃𝜑.∀𝑝 ∶ ℕ → ℕ → ℙ.

(∃𝑓.∀𝑖. 𝑓𝑖 enumerates 𝑝𝑖) → ∃𝛾.∀𝑖. 𝜑𝛾𝑖 enumerates 𝑝𝑖

Theorem
Given EPF every 𝑝 ∶ (ℕ ⇀ ℕ) → ℙ is undecidable if it
1. is extensional: ∀𝑓𝑓 ′ ∶ ℕ ⇀ ℕ.(∀𝑥. 𝑓𝑥 ≡ 𝑓 ′𝑥) → 𝑝𝑓 ↔ 𝑝𝑓 ′

2. is non‐trivial: ∃𝑓1𝑓2. 𝑝𝑓1 ∧ ¬𝑝𝑓2

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 37

Rice’s theorem

EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥
EA ∶= ∃𝜑.∀𝑝 ∶ ℕ → ℕ → ℙ.

(∃𝑓.∀𝑖. 𝑓𝑖 enumerates 𝑝𝑖) → ∃𝛾.∀𝑖. 𝜑𝛾𝑖 enumerates 𝑝𝑖

Theorem
Given EPF every 𝑝 ∶ (ℕ ⇀ ℕ) → ℙ is undecidable if it
1. is extensional: ∀𝑓𝑓 ′ ∶ ℕ ⇀ ℕ.(∀𝑥. 𝑓𝑥 ≡ 𝑓 ′𝑥) → 𝑝𝑓 ↔ 𝑝𝑓 ′

2. is non‐trivial: ∃𝑓1𝑓2. 𝑝𝑓1 ∧ ¬𝑝𝑓2

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 37

Rice’s theorem

EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥
EA ∶= ∃𝜑.∀𝑝 ∶ ℕ → ℕ → ℙ.

(∃𝑓.∀𝑖. 𝑓𝑖 enumerates 𝑝𝑖) → ∃𝛾.∀𝑖. 𝜑𝛾𝑖 enumerates 𝑝𝑖

Theorem
Given EA every 𝑝 ∶ (ℕ → ℙ) → ℙ is undecidable if it
1. is extensional: ∀𝑞𝑞′ ∶ ℕ → ℙ.(∀𝑥. 𝑞𝑥 ↔ 𝑞′𝑥) → 𝑝𝑞 ↔ 𝑝𝑞′

2. is non‐trivial: ∃𝑞1𝑞2 both enumerable. 𝑝𝑞1 ∧ ¬𝑝𝑓2

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 37

EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥

Lemma
Let 𝜙 be given as in EPF and 𝛾 ∶ ℕ → ℕ, then there exists 𝑐 s.t. 𝜙𝛾𝑐 ≡ 𝜙𝑐.

Theorem
Let 𝜙 be given as in EPF and 𝑝 ∶ ℕ → ℙ. If 𝑝 treats elements as codes w.r.t. 𝜙 and
is non‐trivial, then 𝑝 is undecidable.

Proof.
Let 𝑓 decide 𝑝 and let 𝑝𝑐1 and ¬𝑝𝑐2. Define ℎ𝑥𝑦 ∶= if 𝑓𝑥 𝑡ℎ𝑒𝑛 𝜙𝑐2

𝑦 else 𝜙𝑐1
𝑦

and let 𝛾 via EPF be s.t. 𝜙𝛾𝑥 ≡ ℎ𝑥. Let 𝑐 be a fixed‐point for 𝛾.
Case analysis on 𝑓𝑐:
• If 𝑓𝑐 = true we have 𝑝𝑐 and 𝜙𝑐 ≡ 𝜙𝛾𝑐 ≡ ℎ𝑐 ≡ 𝜙𝑐2

. Thus 𝑝𝑐2, contradiction.
• If 𝑓𝑐 = false we have ¬𝑝𝑐 and 𝜙𝑐 ≡ 𝜙𝛾𝑐 ≡ ℎ𝑐 ≡ 𝜙𝑐1

. Thus ¬𝑝𝑐1, contradiction.

Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww Felix Jahn [CSL ’23]

Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if there exists an injection of type
ℕ → ℕ returning only elements in 𝑝.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww Felix Jahn [CSL ’23]

Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if there exists an injection of type
ℕ → ℕ returning only elements in 𝑝.

Theorem
Every infinite predicate has an enumerable infinite subpredicate.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww Felix Jahn [CSL ’23]

Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if ∀𝑛.∃𝑥 > 𝑛. 𝑝𝑥.

Theorem ﴾Meta﴿
Every definable predicate which can be proved infinite can be proved
to have an enumerable subpredicate.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww Felix Jahn [CSL ’23]

Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if there is no list covering 𝑝.

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 39

jww Felix Jahn [CSL ’23]

Kolmogorov complexity
We call a partial function 𝒟 ∶ ℕ ⇀ ℕ a description mode. We call 𝑦 a
description of 𝑥 if 𝒟𝑦 ▷ 𝑥. |𝑛| is the length of the bit string representing a
number 𝑛.

∀𝑦′𝑥. 𝒟′𝑦′ ▷ 𝑥 → ∃𝑦. 𝒟𝑦 ▷ 𝑥 ∧ |𝑦| < |𝑦′| + 𝑑.
𝒞𝑥𝑠 ∶= 𝑠 is 𝜇𝑠. ∃𝑦. 𝑠 = |𝑦| ∧ 𝒟𝑦 ▷ 𝑥

𝒩(𝑥) ∶= 𝒞𝑥 < 𝑥

Lemma
∀𝑥.¬¬∃𝑠. 𝒞𝑥𝑠
Theorem
𝒩 is simple

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 40

jww Nils Lauermann and Fabian Kunze [ITP ’22]

The Coq Library of Undecidability Proofs

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 40

Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Analytic﴿
There is no 𝜇‐recursive enumerator for the complement of the
halting problem.

Theorem ﴾Analytic﴿
Given a 𝜇‐recursive decider for 𝑝, there is a

n

𝜇‐recursive enumerator
for the complement of the halting problem:

𝒟𝑝 → ℰ(HaltTM)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Synthetic﴿
There is no

𝜇‐recursive

enumerator for the complement of the
halting problem, assuming CT.

Theorem ﴾Synthetic﴿
Given a

𝜇‐recursive

decider for 𝑝, there is an

𝜇‐recursive

enumerator
for the complement of the halting problem:

𝒟𝑝 → ℰ(HaltTM)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Synthetic﴿
There is no

𝜇‐recursive

enumerator for the complement of the
halting problem, assuming CT.

Theorem ﴾Synthetic﴿
Given a

𝜇‐recursive

decider for 𝑝, there is an

𝜇‐recursive

enumerator
for the complement of the halting problem:

𝒟𝑝 → ℰ(HaltTM)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Synthetic﴿
There is no

𝜇‐recursive

enumerator for the complement of the
halting problem, assuming CT.

Synthetic definition

𝒰𝑝 ∶= 𝒟𝑝 → ℰ(HaltTM)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 41

The Coq library of undecidability proofs

with Dominique Larchey‐Wendling, Gert Smolka, Fabian Kunze, Max Wuttke …

The Coq library of undecidability proofs

with … Edith Heiter, Dominik Kirst, Simon Spies, Dominik Wehr

The Coq library of undecidability proofs

The Coq library of undecidability proofs

∼100k lines of code, 14 contributers

Models of computation

• Equivalence proofs for computability of relations ℕ𝑘 → ℕ → ℙ
• Identification of the weak call‐by‐value 𝜆‐calculus as sweet spot

• extraction framework doing automatic computability proofs
• can be used to prove many‐one equivalence between problems
• can be used to prove that SCT is a consequence of CT
• even works as a foundation for complexity theory, see Fabian Kunze’s work

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 43

Conclusion

• Machine‐checked textbook proofs are feasible using synthetic
approach, proofs can focus on mathematical essence.

• CIC allows these proofs to be classical and is an ideal ground for
constructive reverse mathematics without choice.

• Lots of open questions regarding constructive status for even
basic results.

• Machine‐checked undecidability proofs from cutting‐edge
research are feasible, proofs can focus on inductive invariants.

Thank you!

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 44

Conclusion

• Machine‐checked textbook proofs are feasible using synthetic
approach, proofs can focus on mathematical essence.

• CIC allows these proofs to be classical and is an ideal ground for
constructive reverse mathematics without choice.

• Lots of open questions regarding constructive status for even
basic results.

• Machine‐checked undecidability proofs from cutting‐edge
research are feasible, proofs can focus on inductive invariants.

Thank you!

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 44

	Computability Theory
	Machine-checked textbook proofs
	Synthetic Oracle Computability
	Results
	The Coq Library of Undecidability Proofs

