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Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Lead questions

How to do constructive reverse analysis of
computability theory proofs?

How to do machine‐checked proofs
in computability theory?

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 3



Computability Theory
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Recipe to write textbooks on computability
1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿

3

1.2 Argue universal program

3

1.3 Optional: Introduce a second model and argue equivalence

3

2. Introduce intuitive computability and Church Turing thesis
3. Develop computability theory relying on Church Turing thesis
3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿

?

3.4 Oracle computation and Turing reducibility

?

4. Prove undecidability of concrete problems ﴾PCP, CFGs﴿

?
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Is there a need for machine‐checked computability proofs?

1932 Gödel claims without proof that his decidability proof for the
[∃∗∀2∃∗, all, (0)] fragment of FOL could be extended to include equality.

… Lots of results depend on Gödel’s claim.
1984 Goldfarb proves the undecidability of this fragment.
1988 Kfoury, Tiuryn, and Urzyczyn: decidability of semi‐unification. ﴾POPL﴿

1990/93 Kfoury, Tiuryn, and Urzyczyn: undecidability of semi‐unification ﴾LICS﴿.
2015 Bimbó proves decidability of the MELL‐fragment of linear logic.
2019 Straßburger disputes proof, leaving status of problem unresolved.
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Machine‐checked textbook proofs
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Synthetic mathematics to the rescue

Analytic mathematics
Objects of
the logic model structures under

investigation

Synthetic mathematics*
Objects of
the logic are turned into structures under

investigation

via axioms

*only possible in constructive mathematics
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Constructive mathematics to the rescue

Church‐Turing thesis:
“Every effectively calculable function is 𝜇‐recursive.”

as an axiom in constructive mathematics

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. the 𝑐‐th 𝜇‐recursive function computes 𝑓
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Overview

1. Axiom‐free “synthetic” computability
2. The axiom CT and its status in Coq
3. Fully Synthetic Computability á la Richman and Bauer
4. Synthetic Computability without choice
5. Synthetic Oracle Computability
6. More results
7. The Coq Library of Undecidability Proofs
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Definitions

Decidability
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 = true

Semi‐decidability
∃𝑓 ∶ ℕ ⇀ ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → 𝔹.∀𝑥. 𝑝𝑥 ↔ 𝑓𝑥 ↓

Many‐one reducibility
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

∧ 𝑓 is computable
∃𝑓 ∶ ℕ → ℕ.∀𝑥. 𝑝𝑥 ↔ 𝑞(𝑓𝑥)

Enumerability, one‐one reducibility, truth‐table reducibility, …
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Myhill isomorphism theorem

Theorem
Let 𝑋 and 𝑌 be enumerable discrete types, 𝑝 ∶ 𝑋 → ℙ, and 𝑞 ∶ 𝑌 → ℙ. If 𝑝 ⪯1 𝑞
and 𝑞 ⪯1 𝑝, then there exist 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 such that for all 𝑥 ∶ 𝑋
and 𝑦 ∶ 𝑌 :

𝑝𝑥 ↔ 𝑞(𝑓𝑥), 𝑞𝑦 ↔ 𝑝(𝑔𝑦), 𝑔(𝑓𝑥) = 𝑥, 𝑓(𝑔𝑦) = 𝑦
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CT is inconsistent in classical systems…

CT ∶= ∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

…because the characteristic function of the self‐halting problem
is not general recursive.

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then 1 else 0

Formally in ZF:
𝑓 ∶= {(𝑛, 1) ∣ 𝜑𝑛𝑛 ↓} ∪ {(𝑛, 0) ∣ 𝜑𝑛𝑛 ↑}

Now 𝑓 is a total functional relation because 𝑓 is …
□3 functional
total
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CT is consistent in constructive systems

CT ∶= ∀𝑓 ∶ ℕ → ℕ.𝑓 is general recursive

• Heyting arithmetic, Kleene [1945]
• Bishop’s constructive mathematics / Martin‐Löf Type Theory
• HoTT ﴾MLTT + propositional truncation + univalence﴿,
Swan and Uemura [2019]

• MLTT, Yamada [2020]
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Slogans of ﴾Coq’s﴿ Type Theory
Types and functions are native
• Inductive types ℕ, 𝔹, 𝐴 × 𝐵 and so on
• The function type 𝐴 → 𝐵 consists exactly of programs in a
total, strongly typed programming language

Propositions behave constructively
• Propositions are types
• Proofs are programs
• ﴾Total, functional﴿ relations are functions 𝐴 → 𝐵 → ℙ
• Classical principles are independent:

DNE ∶= ∀𝑃 ∶ ℙ. ¬¬𝑃 → 𝑃 LEM ∶= ∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃
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CT is not inconsistent in CIC

𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented
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𝑓𝑛 ∶= if 𝜑𝑛𝑛 ↓ then true else false

decision can not be implemented

However, we can define the graph relation 𝐺 ∶ ℕ → 𝔹 → ℙ

𝐺𝑛𝑏 ∶= 𝜑𝑛𝑛 ↓ ↔ 𝑏 = true
□3𝐺 is functional
□3𝐺 is total ﴾using proof by contradiction, i.e. LEM﴿
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Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Curry Howard isomorphism:
A proof of ∃𝑏.𝑝𝑏 is a pair. A proof of ∀𝑎.𝑝𝑎 is a function.

A proof of ∀𝑎.∃𝑏. 𝑅𝑎𝑏 is a function returning a pair.

□3∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → ℙ. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ ∀𝑝 ∶ (∃𝑎. 𝐵𝑎) → 𝕋. (∀(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵𝑎). 𝑝(𝑎, 𝑏)) → ∀(𝑠 ∶ ∃𝑎. 𝐵𝑎). 𝑝𝑠
□ 𝜋1 ∶ (∃𝑎. 𝐵𝑎) → 𝐴
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Relations to functions: Choice principles

The axiom of choice: “every total relation contains a function”

AC𝐴,𝐵 ∶= ∀𝑅 ∶ 𝐴 → 𝐵 → ℙ.(∀𝑎.∃𝑏. 𝑅𝑎𝑏) → ∃𝑓 ∶ 𝐴 → 𝐵.∀𝑎. 𝑅𝑎(𝑓𝑎)

Theorem
The law of excluded middle and the axiom of countable choice
together are inconsistent with CT:

LEM ∧ ACℕ,𝔹 → ¬CT
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Which axioms keep CIC computational?

LEM ∧ ACℕ,𝔹 → ¬CT

• Can one of the assumptions be dropped? ﴾No﴿
• Can one of the assumptions be weakened? ﴾Yes﴿
• How much?
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Weak﴾est﴿ classical logical and choice principles

Theorem

LEM
∧ → ¬CT

ACℕ,𝔹

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience
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Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience
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Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑓 ∶ ℕ → 𝔹. (∃𝑛. 𝑓𝑛 = true) ∨ ¬(∃𝑛. 𝑓𝑛 = true)
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience
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Weak﴾est﴿ classical logical and choice principles

Theorem

∀𝑓 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ∨ ¬(∃𝑛. 𝑓𝑛 = true)
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice

WLPO: Weak limited principle of omniscience
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Weak﴾est﴿ classical logical and choice principles

Theorem

WLPO
∧ → ¬CT

AUCℕ,𝔹

AUC: Axiom of unique choice
WLPO: Weak limited principle of omniscience
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Synthetic computability á la Richman
𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT

′

∶=

∃𝜙.

∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer
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Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer
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Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
There is an 𝑠𝑚

𝑛 operator for currying.
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Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

All assume the axiom of countable choice, resulting in
Theorem
The law of excluded middle is false: ¬(∀𝑃 ∶ ℙ. 𝑃 ∨ ¬𝑃)

20.06.2023 Yannick Forster: Synthetic Computability in Constructive Type Theory 21



Synthetic computability á la Richman, Bridges, and Bauer

𝜙𝑐𝑥 is the value of the 𝑐‐th 𝜇‐recursive function with input 𝑥

CT′ ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ. ∃𝑐 ∶ ℕ. ∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥

1983 Basic results in computable analysis by Richman
1987 More results in computable analysis by Bridges and Richman
2010 First steps in computability theory by Bauer

Bridges and Richman [1987] remark

countable choice can be avoided by postulating an 𝑠𝑚
𝑛 operator
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Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.
Equivalently, using parametrical universality

SCT ∶= ∃𝜙. ∀𝑓 ∶ ℕ → ℕ → ℕ.∃𝛾 ∶ ℕ → ℕ.∀𝑖. 𝜙𝛾𝑖 ≡ 𝑓𝑖

or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,
or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,
or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.
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or using parameterised partial functions ℕ → ℕ ⇀ ℕ ﴾EPF﴿,
or using parameterised boolean functions ℕ → ℕ ⇀ 𝔹 ﴾SCT𝔹﴿,
or using parametrically enumerable predicates ℕ → ℕ → ℙ ﴾EA﴿.
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Synthetic computability without choice
Assume

1. a ﴾partial﴿ function 𝜙
2. universal for ℕ → ℕ: ∀𝑓 ∶ ℕ → ℕ.∃𝑐 ∶ ℕ.∀𝑥. 𝜙𝑐𝑥 ▷ 𝑓𝑥,
3. a function 𝑠 ∶ ℕ → ℕ → ℕ
4. with the property that 𝜙𝑠(𝑐,𝑥)𝑦 ≡ 𝜙𝑐⟨𝑥, 𝑦⟩.

due to strict separation of functions and logic in Coq
the law of excluded middle can be consistently assumed
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1. Introduce favourite model of computation
1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom ﴾SCT, EPF, EA﴿

3

3. Develop computability theory relying on axiom

3

3.1 Undecidability of the halting problem

3

3.2 Rice’s theorem

3

3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿

3

3.4 Oracle computation and Turing reducibility

3

3.5 Kolmogorov complexity

3

3.6 Kleene‐Post and Post’s theorem

3

4. Prove undecidability of concrete problems ﴾PCP, CFGs﴿

3
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1.1 Prove 𝑠𝑚

𝑛 theorem ﴾currying﴿
1.2 Argue universal program
1.3 Optional: Introduce a second model and argue equivalence

2. Define Church Turing thesis as axiom ﴾SCT, EPF, EA﴿ 3

3. Develop computability theory relying on axiom 3

3.1 Undecidability of the halting problem 3

3.2 Rice’s theorem 3
3.3 Reduction theory ﴾Myhill isomorphism theorem, Post’s simple and hypersimple sets﴿ 3

3.4 Oracle computation and Turing reducibility 3

3.5 Kolmogorov complexity 3

3.6 Kleene‐Post and Post’s theorem 3

4. Prove undecidability of concrete problems ﴾PCP, CFGs, needs CT﴿ 3
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Principles in CIC
• Law of excluded middle LEM and Markov’s Principle MP are

• consistent ﴾important to formalise textbook proofs﴿

• but not provable ﴾important for analysing minimal requirements﴿

• Axioms of choice, countable choice, and countable 𝛱0
1‐choice are• consistent ﴾nice to know﴿

• but not provable ﴾otherwise LEM ∧ CT would be inconsistent﴿

• Axiom of countable 𝛴0
1‐choice is provable

⇒ enables constructive reverse mathematics for computability

• not too strong ﴾no 𝛱0
1‐choice, LEM, MP﴿

• just strong enough ﴾countable 𝛴0
1‐choice﴿

• This is not the case in ﴾all?﴿ other type theories
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Other type theories

• Martin‐Löf Type Theory ﴾e.g. Agda﴿ with ∃𝑥.𝑝𝑥 ∶= 𝛴𝑥.𝑝𝑥:
Proves AC, so LLPO → ¬CT.

• Martin‐Löf Type Theory ﴾e.g. Agda﴿ with ∃𝑥.𝑝𝑥 ∶= ¬¬𝛴𝑥.𝑝𝑥:
Does not prove AC, but 𝛱0

1‐ACℕ,𝔹 → ¬CT
• Homotopy Type Theory with ∃𝑥.𝑝𝑥 ∶= ||𝛴𝑥.𝑝𝑥||:
Proves AUC, so WLPO → ¬CT.
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Constructive Reverse Mathematics in CIC

Fred Richman:
“Countable choice is a blind spot for constructive mathematicians in
much the same way as excluded middle is for classical mathematicians.”

Me:
“CIC is a suitable base system for constructive (reverse) mathematics
sensitive to applications of countable choice.”
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Three Flavours

• No axioms
• Morally identify computable functions with functions
• Can prove results not relying on a universal machine

• With CT as axiom
• Needs a model of computation
• Allows proving undecidability of concrete problems
• Allows talking e.g. about the arithmetical hierarchy

• With SCT as axiom
• No need for model of computation
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Conjecture

The following are consistent in CIC:

• CT ﴾implies in particular SCT﴿
• LEM ﴾implies in particular MP﴿
• functional extensionality
• Uniformisation: “Every total relation contains a total functional
subrelation.”
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Synthetic Oracle Computability
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Oracle computability
We call 𝐹 ∶ (𝑄 → 𝐴 → ℙ) → (𝐼 → 𝑂 → ℙ) an ﴾oracle‐﴿computable
functional if there is a computation tree 𝜏 ∶ 𝐼 → 𝕃𝐴 ⇀ 𝑄 + 𝑂 such
that

∀𝑅𝑖𝑜. 𝐹𝑅𝑖𝑜 ↔ ∃𝑞𝑠 𝑎𝑠. 𝜏𝑖 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 ∧ 𝜏 𝑖 𝑎𝑠 ▷ out 𝑜

where the interrogation relation 𝜎; 𝑅 ⊢ 𝑞𝑠; 𝑎𝑠 is inductively defined:

𝜎 ; 𝑅 ⊢ [] ; []
𝜎 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 𝜎𝑎𝑠 ▷ ask 𝑞 𝑅𝑞𝑎

𝜎 ; 𝑅 ⊢ 𝑞𝑠 ++ [𝑞] ; 𝑎𝑠 ++ [𝑎]

where we use the shorthands ask 𝑞 and out 𝑜 for the respective
injections into the sum type 𝑄 + 𝑂 for better intuition.
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Turing reducibility

̂𝑝 ∶= 𝜆𝑥𝑏. {𝑝𝑥 if 𝑏 = true
¬𝑝𝑥 if 𝑏 = false,

A predicate 𝑝 ∶ 𝑋 → ℙ Turing reduces to 𝑞 ∶ 𝑌 → ℙ if:

𝑝 ⪯T 𝑞 ∶= ∃𝐹 . 𝐹 is computable ∧ ∀𝑥𝑏. ̂𝑝𝑥𝑏 ↔ 𝐹 ̂𝑞𝑥𝑏
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Semi‐decidability
𝑝 ∶ 𝑋 → ℙ is semi‐decidable relative to 𝑞 ∶ 𝑌 → ℙ if there is a com‐
putable

𝐹 ∶ (𝑌 → 𝔹 → ℙ) → 𝑋 → 1 → ℙ
with

∀𝑥. 𝑝𝑥 ↔ 𝐹 ̂𝑞 𝑥 ⋆ .

Theorem ﴾PT﴿
We have 𝑝 ⪯T 𝑞 if
• 𝑞 is classical (∀𝑦. 𝑞𝑦 ∨ ¬𝑞𝑦),
• 𝑝 is semi‐decidable in 𝑞
• the complement of 𝑝 is semi‐decidable in 𝑞
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The arithmetical hierarchy
All first‐order logic formulas is equivalent to a formula in prenex
normal form if and only if LEM holds.
We can define a predicate 𝑝 ∶ ℕ → ℙ to be

• 𝛴0 and 𝛱0 if it is expressible as quantor‐free arithmetical formula.
• 𝛴𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∃ ⃗𝑦1∀ ⃗𝑦2 … ∇ ⃗𝑦𝑛. 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)
• 𝛱𝑛+1 if there is a quantor‐free arithmetical formula 𝑞 with

∀𝑥. 𝑝𝑥 ↔ ∀ ⃗𝑦1∃ ⃗𝑦2 … ∇ ⃗𝑦𝑛 … . 𝑞(𝑥, ⃗𝑦1, ⃗𝑦2, … , ⃗𝑦𝑛)

Or replace quantor‐free by decidable.
Theorem
Both definitions are equivalent under CT.
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Ever seen this principle?

Markov’s Principle

MP ∶= ∀𝑓 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑓𝑛 = true)

Anonymised Markov’s Principle

AMP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)

Principle of Finite Possibility

PFP ∶= ∀𝑓 ∶ ℕ → 𝔹.∃𝑔 ∶ ℕ → 𝔹. ¬(∃𝑛. 𝑓𝑛 = true) ↔ (∃𝑛. 𝑔𝑛 = true)
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Axioms for Oracle computability
Given a universal 𝜃 ∶ ℕ → (ℕ ⇀ ℕ), construct universal

𝜉 ∶ ℕ → (ℕ → 𝕃𝔹 → ℕ + 1)
enumerating any possible tree.
Given a tree 𝜎 ∶ ℕ → 𝕃𝔹 → ℕ + 1 define

�̂�𝑅𝑥 ∶= ∃𝑞𝑠 𝑎𝑠. 𝜎 ; 𝑅 ⊢ 𝑞𝑠 ; 𝑎𝑠 ∧ 𝜎 𝑎𝑠 ▷ out ⋆
𝛯𝑐𝑅𝑥 ∶= 𝜉𝑐𝑅𝑥

We define the Turing jump 𝑞′ of a predicate 𝑞 ∶ ℕ → ℙ as

𝑞′𝑐 ∶= 𝛯𝑐 ̂𝑞 𝑐

Theorem
𝑞′ is semi‐decidable in 𝑞, but its complement is not.
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Classical logic in the arithmetical hierarchy
𝛴𝑛‐LEM ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛴𝑛𝑝 → ∀𝑣.𝑝𝑣 ∨ ¬𝑝𝑣 𝛴𝑛‐DNE ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛴𝑛𝑝 → ∀𝑣.¬¬𝑝𝑣 → 𝑝𝑣

𝛱𝑛‐LEM ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛱𝑛𝑝 → ∀𝑣.𝑝𝑣 ∨ ¬𝑝𝑣 𝛱𝑛‐DNE ∶= ∀𝑘.∀𝑝 ∶ ℕ𝑘. 𝛱𝑛𝑝 → ∀𝑣.¬¬𝑝𝑣 → 𝑝𝑣
𝛴𝑛‐LEM

𝛱𝑛‐LEM 𝛴𝑛‐DNE

𝛱𝑛‐DNE

𝛴𝑛−1‐DNE

Y. Akama, S. Berardi, S. Hayashi, and U. Kohlenbach, An arithmetical hierarchy of the law of excluded
middle and related principles ﴾2004﴿
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Post’s theorem

Theorem ﴾Post﴿
Assuming 𝛴0

𝑛‐LEM:
• A unary predicate 𝐴 is 𝛴𝑛+1 iff it is semi‐decidable relative to ∅(𝑛).
• If 𝐴 is 𝛴𝑛, then 𝐴 ⪯𝑇 ∅(𝑛).
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Results
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Rice’s theorem

EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥
EA ∶= ∃𝜑.∀𝑝 ∶ ℕ → ℕ → ℙ.

(∃𝑓.∀𝑖. 𝑓𝑖 enumerates 𝑝𝑖) → ∃𝛾.∀𝑖. 𝜑𝛾𝑖 enumerates 𝑝𝑖

Theorem
Given EPF every 𝑝 ∶ (ℕ ⇀ ℕ) → ℙ is undecidable if it
1. is extensional: ∀𝑓𝑓 ′ ∶ ℕ ⇀ ℕ.(∀𝑥. 𝑓𝑥 ≡ 𝑓 ′𝑥) → 𝑝𝑓 ↔ 𝑝𝑓 ′

2. is non‐trivial: ∃𝑓1𝑓2. 𝑝𝑓1 ∧ ¬𝑝𝑓2
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EPF ∶= ∃𝜙.∀𝑓 ∶ ℕ → ℕ ↛ ℕ.∃𝛾. ∀𝑖𝑥. 𝜙𝛾𝑖𝑥▷𝑓𝑖𝑥

Lemma
Let 𝜙 be given as in EPF and 𝛾 ∶ ℕ → ℕ, then there exists 𝑐 s.t. 𝜙𝛾𝑐 ≡ 𝜙𝑐.

Theorem
Let 𝜙 be given as in EPF and 𝑝 ∶ ℕ → ℙ. If 𝑝 treats elements as codes w.r.t. 𝜙 and
is non‐trivial, then 𝑝 is undecidable.

Proof.
Let 𝑓 decide 𝑝 and let 𝑝𝑐1 and ¬𝑝𝑐2. Define ℎ𝑥𝑦 ∶= if 𝑓𝑥 𝑡ℎ𝑒𝑛 𝜙𝑐2

𝑦 else 𝜙𝑐1
𝑦

and let 𝛾 via EPF be s.t. 𝜙𝛾𝑥 ≡ ℎ𝑥. Let 𝑐 be a fixed‐point for 𝛾.
Case analysis on 𝑓𝑐:
• If 𝑓𝑐 = true we have 𝑝𝑐 and 𝜙𝑐 ≡ 𝜙𝛾𝑐 ≡ ℎ𝑐 ≡ 𝜙𝑐2

. Thus 𝑝𝑐2, contradiction.
• If 𝑓𝑐 = false we have ¬𝑝𝑐 and 𝜙𝑐 ≡ 𝜙𝛾𝑐 ≡ ℎ𝑐 ≡ 𝜙𝑐1

. Thus ¬𝑝𝑐1, contradiction.



Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
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Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if there exists an injection of type
ℕ → ℕ returning only elements in 𝑝.

Theorem
Every infinite predicate has an enumerable infinite subpredicate.
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Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if ∀𝑛.∃𝑥 > 𝑛. 𝑝𝑥.

Theorem ﴾Meta﴿
Every definable predicate which can be proved infinite can be proved
to have an enumerable subpredicate.
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Simple predicates
Definition ﴾analytic﴿
A predicate 𝑝 ∶ ℕ → ℙ is called simple if
• it is enumerable,
• its complement is infinite,
• its complement has no enumerable infinite subpredicate.

Definition
A predicate 𝑝 ∶ ℕ → ℙ is infinite if there is no list covering 𝑝.
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Kolmogorov complexity
We call a partial function 𝒟 ∶ ℕ ⇀ ℕ a description mode. We call 𝑦 a
description of 𝑥 if 𝒟𝑦 ▷ 𝑥. |𝑛| is the length of the bit string representing a
number 𝑛.

∀𝑦′𝑥. 𝒟′𝑦′ ▷ 𝑥 → ∃𝑦. 𝒟𝑦 ▷ 𝑥 ∧ |𝑦| < |𝑦′| + 𝑑.
𝒞𝑥𝑠 ∶= 𝑠 is 𝜇𝑠. ∃𝑦. 𝑠 = |𝑦| ∧ 𝒟𝑦 ▷ 𝑥

𝒩(𝑥) ∶= 𝒞𝑥 < 𝑥

Lemma
∀𝑥.¬¬∃𝑠. 𝒞𝑥𝑠
Theorem
𝒩 is simple
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The Coq Library of Undecidability Proofs
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Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Analytic﴿
There is no 𝜇‐recursive enumerator for the complement of the
halting problem.

Theorem ﴾Analytic﴿
Given a 𝜇‐recursive decider for 𝑝, there is a

n

𝜇‐recursive enumerator
for the complement of the halting problem:

𝒟𝑝 → ℰ(HaltTM)
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Synthetic undecidability
Analytic definition

𝒰𝑝 ∶= ¬∃𝑓. 𝜇‐recursive 𝑓 ∧ …

Lemma ﴾Synthetic﴿
There is no

𝜇‐recursive

enumerator for the complement of the
halting problem, assuming CT.

Synthetic definition

𝒰𝑝 ∶= 𝒟𝑝 → ℰ(HaltTM)
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The Coq library of undecidability proofs

with Dominique Larchey‐Wendling, Gert Smolka, Fabian Kunze, Max Wuttke …



The Coq library of undecidability proofs

with … Edith Heiter, Dominik Kirst, Simon Spies, Dominik Wehr



The Coq library of undecidability proofs



The Coq library of undecidability proofs

∼100k lines of code, 14 contributers



Models of computation

• Equivalence proofs for computability of relations ℕ𝑘 → ℕ → ℙ
• Identification of the weak call‐by‐value 𝜆‐calculus as sweet spot

• extraction framework doing automatic computability proofs
• can be used to prove many‐one equivalence between problems
• can be used to prove that SCT is a consequence of CT
• even works as a foundation for complexity theory, see Fabian Kunze’s work
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Conclusion

• Machine‐checked textbook proofs are feasible using synthetic
approach, proofs can focus on mathematical essence.

• CIC allows these proofs to be classical and is an ideal ground for
constructive reverse mathematics without choice.

• Lots of open questions regarding constructive status for even
basic results.

• Machine‐checked undecidability proofs from cutting‐edge
research are feasible, proofs can focus on inductive invariants.

Thank you!
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